[Graph-based interactive three-dimensional segmentation of magnetic resonance images of brain tumors].

Nan Fang Yi Ke Da Xue Xue Bao

Key Lab for Medical Image Processing, Southern Medical University, Guangzhou 510515, China.

Published: January 2009

We propose a graph-based three-dimensional (3D) algorithm to automatically segment brain tumors from magnetic resonance images (MRI). The algorithm uses minimum s/t cut criteria to obtain a global optimal result of objective function formed according to Markov Random Field Model and Maximum a posteriori (MAP-MRF) theory, and by combining the expectation-maximization (EM) algorithm to estimate the parameters of mixed Gaussian model for normal brain and tumor tissues. 3D segmentation results of brain tumors are fast achieved by our algorithm. The validation of the algorithm was tested and showed good accuracy and adaptation under simple interactions with the physicians.

Download full-text PDF

Source

Publication Analysis

Top Keywords

magnetic resonance
8
resonance images
8
brain tumors
8
algorithm
5
[graph-based interactive
4
interactive three-dimensional
4
three-dimensional segmentation
4
segmentation magnetic
4
brain
4
images brain
4

Similar Publications

Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.

Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

Background: Studies are still limited on the isolated effect of retear after arthroscopic rotator cuff repair (ARCR) on functional outcomes after the midterm period.

Purpose: To assess the effect of retear at midterm follow-up after ARCR and to identify factors associated with the need for revision surgery.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!