Role of perinatal inflammation in cerebral palsy.

Pediatr Neurol

Laboratory of Neuropediatrics-Laboratoire de Neuropédiatrie, Neurosciences Centre, University of Sherbrooke, Sherbrooke, Quebec, Canada.

Published: March 2009

Inflammatory molecules are promptly upregulated in the fetal environment and postnatally in brain-damaged subjects. Intrauterine infections and inflammation are often associated with asphyxia. This double-hit effect by combined infection or inflammation and hypoxia is therefore a frequent concomitant in neonatal brain damage. Animal models combining hypoxia and infection were recently designed to explore the mechanisms underlying brain damage in such circumstances and to look for possible neuroprotective strategies. Proinflammatory cytokines are thought to be major mediators in brain injury in neonates with perinatal asphyxia, bacterial infection, or both. Cytokines, however, could also have neuroprotective properties. The critical point in the balance between neurodamaging and neuroprotective effects of cytokines has yet to be unraveled. This understanding might help to develop new therapeutic approaches to counteract the inflammatory disequilibrium observed in the pathophysiologic mechanisms associated with brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pediatrneurol.2008.09.016DOI Listing

Publication Analysis

Top Keywords

brain damage
8
brain injury
8
role perinatal
4
perinatal inflammation
4
inflammation cerebral
4
cerebral palsy
4
palsy inflammatory
4
inflammatory molecules
4
molecules upregulated
4
upregulated fetal
4

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Olfactory dysfunction (OD) is an underestimated symptom in multiple sclerosis (MS). Multiple factors may play a role in the OD reported by MS patients, such as ongoing inflammation in the central nervous system (CNS), damage to the olfactory bulbs due to demyelination, and the presence of plaques in brain areas associated with the olfactory system. Indeed, neuroimaging studies in MS have shown a clear association of the OD with the number and activity of MS-related plaques in frontal and temporal brain regions.

View Article and Find Full Text PDF

Assessment of Iron Metabolism and Inflammation in Children with Cerebral Palsy.

J Clin Med

December 2024

Department of Physiology, Faculty of Medicine, Mardin Artuklu University, Mardin 47100, Turkey.

Cerebral palsy (CP) is a motor disorder resulting from brain damage that is common in childhood. Iron is vital for the body's basic functions. Iron metabolism disorders and inflammation contribute to the neurological complications seen in CP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!