DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism.

Tuberculosis (Edinb)

Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.

Published: March 2009

The DevR transcriptional switch that defines the response of Mycobacterium tuberculosis to the lack of oxygen is now well established and likely helps the bacteria shift to a state of persistence. The M. tuberculosis two component signal transduction system (TCS), DevR-DevS, implicated in this transition to latency, is differentially expressed in H37Ra and H37Rv strains. Despite originating from the H37 ancestral strain, H37Ra and H37Rv have significant differences in their growth, physiology, and virulence. To further dissect the role of DevR in growth adaptive processes of M. tuberculosis, we investigated the hypoxic response of the avirulent H37Ra strain. Our results show that the DevR-DevS TCS in H37Ra is responsive to hypoxia and capable of target gene regulation, indicating similar DevR-DevS signaling pathways in H37Ra and H37Rv. A key finding of this study was the constitutive expression of the Rv3134c-devR-devS operon and a subset of sentinel DevR-regulated genes in aerobic cultures of H37Ra but not H37Rv grown in Dubos-Tween-albumin medium. Asparagine and/or catabolites of asparagine metabolism were implicated in aerobic induction of the DevR-DevS TCS in H37Ra. This is the first report of medium-specific constitutive expression of the DevR regulon in an avirulent strain and suggests a potential role for metabolite(s) in the activation of the DevR-DevS TCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693488PMC
http://dx.doi.org/10.1016/j.tube.2008.12.003DOI Listing

Publication Analysis

Top Keywords

h37ra h37rv
16
devr-devs tcs
12
response mycobacterium
8
mycobacterium tuberculosis
8
h37ra
8
asparagine metabolism
8
tcs h37ra
8
constitutive expression
8
devr-devs
5
devr-mediated adaptive
4

Similar Publications

Enhanced autophagy and cholesterol efflux in mouse mesenchymal stem cells infected with H37Rv compared to H37Ra.

Microb Pathog

December 2024

Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China. Electronic address:

Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during Mycobacterium tuberculosis (Mtb) infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of Mtb remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections.

View Article and Find Full Text PDF

JIB-04, an inhibitor of Jumonji histone demethylase as a potent antitubercular agent against Mycobacterium tuberculosis.

Arch Microbiol

November 2024

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.

The increasing drug resistance of Mycobacterium tuberculosis (Mtb), coupled with the limited availability of effective anti-tuberculosis medications, poses significant challenges for the management and treatment of tuberculosis (TB). Globally, non-tuberculous mycobacteria (NTM) infections are increasing, with Mycobacterium avium complex and Mycobacterium abscessus (Mab) being the most common in labs and having few treatment options. There's an urgent need for innovative therapies against Mtb and NTM that are effective and have minimal side effects.

View Article and Find Full Text PDF

Host-directed therapies aiming to strengthen the body's immune system, represent an underexplored opportunity to improve treatment of tuberculosis (TB). We have previously shown in Mycobacterium tuberculosis (Mtb)-infection models and clinical trials that treatment with the histone deacetylase (HDAC) inhibitor, phenylbutyrate (PBA), can restore Mtb-induced impairment of antimicrobial responses and improve clinical outcomes in pulmonary TB. In this study, we evaluated the efficacy of different groups of HDAC inhibitors to reduce Mtb growth in human immune cells.

View Article and Find Full Text PDF

Discovery of potent dihydro-oxazinoquinolinone inhibitors of GuaB for the treatment of tuberculosis.

Bioorg Med Chem Lett

November 2024

Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States. Electronic address:

Tuberculosis is the leading cause of death from an infectious disease, and is caused by Mycobacterium tuberculosis (M.tb). More than 1 billion people worldwide are thought to harbor an M.

View Article and Find Full Text PDF

Host-directed therapies (HDT) via modulation of specific host responses like inflammation can limit mycobacterial infection. HDTs could be included in current TB therapy as an adjunct to increase bacterial clearance and limit tissue damage to control spread. Individually, Mycobacterium indicus pranii (MIP) and human beta defensin-2 (hBD-2) are promising therapies for tuberculosis (TB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!