Enhancement of antibody production from a chicken B cell line DT40 by reducing Pax5 expression.

J Biosci Bioeng

Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan.

Published: February 2009

We developed a novel in vitro antibody (Ab) generation system using a hypermutating chicken B cell line (DT40-SW). We suppressed the expression of the Pax5 transcription factor by targeted disruption of the gene to increase Ab production in isolated clones and produce the desired Abs. This single genetic manipulation resulted in a significant enhancement of Ab production without significantly affecting maximum cell density.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2008.09.014DOI Listing

Publication Analysis

Top Keywords

chicken cell
8
enhancement antibody
4
antibody production
4
production chicken
4
cell dt40
4
dt40 reducing
4
reducing pax5
4
pax5 expression
4
expression developed
4
developed novel
4

Similar Publications

A protein corona modulates the function of mineralization-competent matrix vesicles.

JBMR Plus

February 2025

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.

Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.

View Article and Find Full Text PDF

Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models and .

View Article and Find Full Text PDF

The aim of this study was to detect chicken parvovirus (ChPV) and turkey parvovirus (TuPV) on Turkish poultry farms and examine the molecular epidemiology of these viruses. In 2023, a total of 1,060 fecal samples were collected from 76 broiler farms and 30 turkey farms across various regions of Turkiye. The overall positivity rate was 72.

View Article and Find Full Text PDF

Reticuloendotheliosis virus (REV) is a gamma retrovirus that can cause immunosuppression, dwarf syndrome and acute reticulocytoma in poultry. The molecular mechanism by which REV infection leads to immunosuppression and tumorigenesis is poorly understood. In this study, we elucidated the regulatory network of miRNA-mRNA and the major signaling pathways involved in REV-SNV infection.

View Article and Find Full Text PDF

Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication.

Front Cell Infect Microbiol

January 2025

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China.

Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!