Introduction: Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone into estrone and estradiol, respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole; Femara) is a high-affinity aromatase inhibitor (K(i)=11.5 nM) that has Food and Drug Administration approval for breast cancer treatment. Here we report the synthesis of carbon-11-labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon.
Methods: Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile) were prepared in a two-step synthesis from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [(11)C]cyano group was introduced via tetrakis(triphenylphosphine)palladium(0)-catalyzed coupling of [(11)C]cyanide with the bromo precursor. Positron emission tomography (PET) studies in the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. Log D, the free fraction of letrozole in plasma and the [(11)C-cyano]letrozole fraction in arterial plasma were also measured.
Results: [(11)C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79-80%, with a radiochemical purity greater than 98% and a specific activity of 4.16+/-2.21 Ci/mumol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance, followed by slow clearance of carbon-11 from the brain, with no difference between brain regions. Brain kinetics was not affected by coinjection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9%, and log D was 1.84.
Conclusion: [(11)C-cyano]Letrozole is readily synthesized via a palladium-catalyzed coupling reaction with [(11)C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase, as revealed by the absence of regional specificity and saturability in brain regions such as amygdala, which are known to contain aromatase, it may be useful in measuring letrozole distribution and pharmacokinetics in the brain and peripheral organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161428 | PMC |
http://dx.doi.org/10.1016/j.nucmedbio.2008.11.010 | DOI Listing |
ChemSusChem
December 2024
Universität Greifswald: Universitat Greifswald, Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, GERMANY.
As global plastic consumption and littering escalate, innovative approaches to sustainable waste management are crucial. Enzymatic depolymerization has emerged as a promising recycling method for polyesters via monomer recovery under mild conditions. However, current research mainly focuses on using a single plastic feedstock, which can only be derived from complex and costly plastic waste sorting.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
December 2024
Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
Background: The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood-brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d and -d deuterated isotopologues of [F]JHU94620.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, 610041, China.
Purpose: Extranodal natural killer/T-cell lymphoma (ENKTCL) is an hematologic malignancy with prognostic heterogeneity. We aimed to develop and validate DeepENKTCL, an interpretable deep learning prediction system for prognosis risk stratification in ENKTCL.
Methods: A total of 562 patients from four centers were divided into the training cohort, validation cohort and test cohort.
Endocrine
December 2024
Nuclear Medicine and Molecular Imaging, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France.
Purpose: To evaluate organ-specific response to [Lu]DOTATATE Peptide Receptor Radionuclide Therapy (PRRT) in patients with small intestine neuroendocrine tumor (SiNET) through [Ga]DOTATOC PET/CT, and to analyze tumor uptake and functional volume variations at different metastatic sites in relation to disease progression during clinical follow-up after treatment.
Methods: A retrospective analysis was conducted on 33 metastatic patients. PET/CT were performed pre-treatment (PET0), mid-treatment after two PRRT cycles (PET2), and post-treatment (PET4).
J ECT
December 2024
Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium.
Electroconvulsive therapy (ECT) effectively treats severe psychiatric disorders such as depression, mania, catatonia, and schizophrenia. Although its exact mechanism remains unclear, ECT is thought to induce neurochemical and neuroendocrine changes. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have provided vital insights into ECT's neurobiological effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!