Multilayer mediated forward and patterned siRNA transfection using linear-PEI at extended N/P ratios.

Acta Biomater

Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.

Published: June 2009

Gene delivery from a substrate depends, in part, on the vector-nucleic acid complex that is bound to the surface and the cell adhesive properties of the surface. Here, we present a method to deliver patterns of small interfering RNA (siRNA) that capitalize on a forward transfection method (transfection by introducing siRNA transfection reagent complexes onto plated cells); herein denoted as multilayer mediated forward transfection (MFT). This method separates the substrate-mediated delivery from the cell adhesive properties of the surface. pH responsive layer-by-layer (LbL) assembled multilayers were used as the delivery platform and microcontact printing technique (microCP) was used to pattern nanoparticles of transfection reagent-siRNA complexes onto degradable multilayers. Efficient MFT depend on optimal formulation of the nanoparticles. 25 kDa linear polyethylenimine (LPEI) was optimized as the siRNA transfection reagent for normal forward transfection (NFT) of the nanoparticles. A broad range of LPEI-siRNA nitrogen/phosphate (N/P) ratios (ranging from 5 to 90) was evaluated for the relative amounts of siRNA incorporated into the nanoparticles, nanoparticle size and NFT efficiencies. All the siRNA was incorporated into the nanoparticles at N/P ratio near 90. Increasing the amount of siRNA incorporated into the nanoparticles, with increasing N/P ratio correlated with a linear blue shift in the ultraviolet/visible (UV/vis) absorbance spectrum of the LPEI-siRNA nanoparticles. NFT efficiency greater than 80% was achieved with minimal cytotoxicity at N/P ratio of 30 and siRNA concentration of 200 nM. Similarly, MFT efficiency 60% was achieved for LPEI-siRNA nanoparticles at N/P ratios greater than 30.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677632PMC
http://dx.doi.org/10.1016/j.actbio.2009.01.004DOI Listing

Publication Analysis

Top Keywords

sirna transfection
12
n/p ratios
12
forward transfection
12
sirna incorporated
12
incorporated nanoparticles
12
n/p ratio
12
multilayer mediated
8
mediated forward
8
sirna
8
transfection
8

Similar Publications

Objective: Interleukin-17 E (IL-17E) is a pro-inflammatory cytokine that participates in the inflammatory response and tumorigenesis. However, the function of IL-17E in non-small cell lung cancer (NSCLC) remains largely unknown.

Methods: The clinical value of IL-17E was determined by immunohistochemistry (IHC) in 75 cases of NSCLC tissues.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.

Background: PhospholipaseC γ2 (PLCG2) is known to have direct link with genetic risk factors for Alzheimer's like dementia (AD). PLCG2 has been previously demonstrated to have association with Aß uptake through microglia. And mostly expressed in dentate gyrus (DG) network of hippocampus.

View Article and Find Full Text PDF
Article Synopsis
  • Type 1 diabetes (T1D) results from an autoimmune attack that destroys insulin-producing beta cells, with its initiation linked to genetic, immunological, and environmental factors, particularly viral infections like Coxsackievirus B (CVB).
  • Research reveals that CVB serotype 1 (CVB1) may trigger autoimmune responses in genetically susceptible individuals, but the exact mechanisms of its replication in beta cells are unclear.
  • New findings indicate that the N6-methyladenosine (m6A) modification influences CVB1 amplification, where downregulating m6A "writers" increases viral replication, while inhibiting "erasers" like FTO significantly decreases infectious CVB1 production, highlighting m6A's role
View Article and Find Full Text PDF

[WWP1 plays a positive role in ameloblast differentiation and enamel formation in mice].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan430079, China.

Article Synopsis
  • The study focuses on the role of WWP1, a protein ligase, in the enamel development of mice.
  • Single-cell RNA sequencing and immunohistochemistry showed that WWP1 is highly expressed in dental epithelial cells, specifically in ameloblasts involved in enamel formation.
  • Wwp1 knockout mice displayed significant enamel developmental defects, including reduced enamel volume and disorganized enamel structures compared to control mice.
View Article and Find Full Text PDF

Objective: To investigate the effect of different isoforms of on the proliferation of multiple myeloma (MM) cells after alternative splicing mediated by splicing factor .

Methods: RT-PCR was used to detect the expression levels of mRNA splicing isoforms regulated by . The GEO database was used to analyze the changes of isoform 1 in the progression of plasma cell disease, and survival analysis was used to evaluate the value of this gene in the prognosis of MM patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!