The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables dynamic scene compositing, real-time interaction combined with animation, correlation of 3D models with sectional images, quantification as well as 3D manipulation-independent labeling and knowledge-related meta labeling (with name, diameter, description, variants, and references). This novel exploration is incorporated into a 3D atlas of cerebral vasculature with arteries and veins along with the surrounding surface and sectional neuroanatomy derived from 3.0 Tesla scans. This exploration paradigm is useful in medical education, training, research, and clinical applications. It enables development of new generation systems for rapid and intelligent exploration of complicated digital body models in real time with dynamic scene compositing from highly parcellated 3D models, continuous navigation, and manipulation-independent labeling with multiple features.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ase.68DOI Listing

Publication Analysis

Top Keywords

cerebral vasculature
12
body models
12
surface sectional
8
sectional neuroanatomy
8
development generation
8
generation systems
8
intelligent exploration
8
digital body
8
dynamic scene
8
scene compositing
8

Similar Publications

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Vascularized human brain organoids: current possibilities and prospects.

Trends Biotechnol

January 2025

Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:

Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Eli Lilly and Company, Indianapolis, IN, USA.

Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Clinic of Cardiovascular Diseases named after Most Holy John Tobolsky, Moscow, Moscow, Russia.

Background: Dementia aggravates most cerebrovascular lesions, which requires differentiating the developed microcirculatory changes when making a diagnosis. We consider the features of cerebral microcirculation disorders in Alzheimer's disease (AD), distal cerebral atherosclerosis, Binswanger's disease (BD), and vascular parkinsonism (VP).

Method: The study included 1024 patients who underwent: assessment of CDR, TDR, MMSE, cerebral MRI, MRA, CT, MSCTA, scintigraphy (SG), rheoencephalography (REG), cerebral multi-gated angiography (MUGA).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India.

Background: Vascular Dementia (VaD) is the second most prevalent cause of dementia, arising from the blockage of blood vessels in the brain. One event responsible for the blockage or narrowing of small blood vessels is transient ischemic attack (TIA), and these changes resolve within 24 hours in humans. The molecular mechanism underlying these changes in recovery in small vessels still needs to be investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!