Background: Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1alpha) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1alpha is found, and the Streptophyta possess EF-1alpha except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1alpha and EFL. A previous study launched the hypothesis that EF-1alpha was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1alpha or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1alpha and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models.
Results: Within the Chlorophyta, EF-1alpha is shown to be present in three ulvophycean orders (i.e., Dasycladales, Bryopsidales, Siphonocladales) and the genus Ignatius. Models describing gene gain-loss dynamics revealed that the presence of EF-1alpha, EFL or both genes along the backbone of the green plant phylogeny is highly uncertain due to sensitivity to branch lengths and lack of prior knowledge about ancestral states or rates of gene gain and loss. Model refinements based on insights gained from the EF-1alpha phylogeny reduce uncertainty but still imply several equally likely possibilities: a primitive EF-1alpha state with multiple independent EFL gains or coexistence of both genes in the ancestor of the Viridiplantae or Chlorophyta followed by differential loss of one or the other gene in the various lineages.
Conclusion: EF-1alpha is much more common among green algae than previously thought. The mutually exclusive distribution of EF-1alpha and EFL is confirmed in a large sample of green plants. Hypotheses about the gain-loss dynamics of elongation factor genes are hard to test analytically due to a relatively flat likelihood surface, even if prior knowledge is incorporated. Phylogenetic analysis of EFL genes indicates misinterpretations in the recent literature due to uncertainty regarding the root position.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652445 | PMC |
http://dx.doi.org/10.1186/1471-2148-9-39 | DOI Listing |
ACS Omega
April 2019
Leading Graduate School Doctoral Program in Human Biology, Center for Computational Sciences, Graduate School of Life and Environmental Sciences, and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
Translation elongation factor-1alpha (EF-1α) or its paralog elongation factor-like proteins (EFL) interact with an aminoacyl-transfer RNA (aa-tRNA) to play its essential role in elongation of peptide-chain during protein synthesis. Species usually have either an EF-1α or EFL protein; however, some species have both EF-1α and EFL (dual-EF-containing species). In the dual-EF-containing species, EF-1α appeared to be highly divergent in the sequence.
View Article and Find Full Text PDFBMC Evol Biol
June 2013
Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
Background: Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two elongation factor types across global eukaryotic phylogeny is suggestive of a 'differential loss' hypothesis that assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by independent differential losses of one of the two factors in the descendant lineages. To date, however, just one diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species).
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2012
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
Elongation factor 1α (EF-1α) and elongation factor-like (EFL) proteins are considered to carry out equivalent functions in translation in eukaryotic cells. Elongation factor 1α and EFL genes are patchily distributed in the global eukaryotic tree, suggesting that the evolution of these elongation factors cannot be reconciled without multiple lateral gene transfer and/or ancestral co-occurrence followed by differential loss of either of the two factors. Our current understanding of the EF-1α/EFL evolution in the eukaryotic group Rhizaria, composed of Foraminifera, Radiolaria, Filosa, and Endomyxa, remains insufficient, as no information on EF-1α/EFL gene is available for any members of Radiolaria.
View Article and Find Full Text PDFPLoS One
June 2012
The Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly related to all other fungi, and is unique in possessing both EF-1α and EFL genes.
View Article and Find Full Text PDFMol Biol Evol
August 2011
Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic.
Many eukaryotic genes do not follow simple vertical inheritance. Elongation factor 1α (EF-1α) and methionine adenosyl transferase (MAT) are enzymes with complicated evolutionary histories and, interestingly, the two cases have several features in common. These essential enzymes occur as two relatively divergent paralogs (EF-1α/EFL, MAT/MATX) that have patchy distributions in eukaryotic lineages that are nearly mutually exclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!