This study's purpose was to investigate whether photochemically crosslinking collagen gel to encapsulate chondrocytes (articular, auricular, costal) would permit new cartilage formation in vivo, and to determine whether this neocartilage had the ability to integrate with existing native cartilage. Chondrocytes from swine were embedded in collagen gel that was photochemically crosslinked using riboflavin and visible light. Controls were collagen gels containing cells that were not crosslinked. Cylindrical implants (0.1 cc) were placed in athymic mice for 4 and 8 weeks. To study integration, the constructs were crosslinked within articular cartilage rings and implanted in the mice. Samples were analyzed in terms of macroscopic, microscopic, and biochemical aspects. Photocrosslinking did not affect the amount of glycosaminoglycan and type II collagen produced by the cells. We found that photochemical crosslinking collagen gel enhances the physical parameters of the gel and permits new cartilage formation that can integrate with existing native cartilage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0030-1247729 | DOI Listing |
J Cosmet Dermatol
January 2025
Clinical Pharmacology Consultant in Aesthetic Medicine, Milan, Italy.
Background: Postsurgical atrophic scars tend to respond poorly to treatments, especially non-energy-based ones. Hydrophilic PN HPT (Polynucleotides High Purification Technology) injected intradermally is a non-energy-based option with an immediate volume-enhancing effect that indirectly improves the fibroblast synthesis of collagen and extracellular matrix. The PN HPT ingredient has the further benefit of a dermal "priming" effect that enhances the efficacy of other scar treatments.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties.
View Article and Find Full Text PDFInt J Pharm
January 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:
Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:
Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!