Fourier transform near-infrared (NIR) transmission spectra are used for quantitative analysis of glucose for 17 sets of prediction data sampled as much as six months outside the timeframe of the corresponding calibration data. Aqueous samples containing physiological levels of glucose in a matrix of bovine serum albumin and triacetin are used to simulate clinical samples such as blood plasma. Background spectra of a single analyte-free matrix sample acquired during the instrumental warm-up period on the prediction day are used for calibration updating and for determining the optimal frequency response of a preprocessing infinite impulse response time-domain digital filter. By tuning the filter and the calibration model to the specific instrumental response associated with the prediction day, the calibration model is given enhanced ability to operate over time. This methodology is demonstrated in conjunction with partial least squares calibration models built with a spectral range of 4700-4300 cm(-1). By using a subset of the background spectra to evaluate the prediction performance of the updated model, projections can be made regarding the success of subsequent glucose predictions. If a threshold standard error of prediction (SEP) of 1.5 mM is used to establish successful model performance with the glucose samples, the corresponding threshold for the SEP of the background spectra is found to be 1.3 mM. For calibration updating in conjunction with digital filtering, SEP values of all 17 prediction sets collected over 3-178 days displaced from the calibration data are below 1.5 mM. In addition, the diagnostic based on the background spectra correctly assesses the prediction performance in 16 of the 17 cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/000370209787392076 | DOI Listing |
Microscopy (Oxf)
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
The self-absorption effects observed in the background intensity just above the Si L-emission spectra of Si and β-Si3N4, and the C K-emission spectra of diamond and graphite were examined. Based on comparisons with reported results, the energy positions of absorption edges-representing the bottom of conduction bands (CB)-were assigned. The self-absorption profiles in the background intensities were consistent with previously reported data.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Physics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Beihang University, Beijing 100191, China.
Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.
View Article and Find Full Text PDFNanophotonics
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Routine screening to detect silent but deadly cancers such as pancreatic ductal adenocarcinoma (PDAC) can significantly improve survival, creating an important need for a convenient screening test. High-resolution proton (1H) magnetic resonance spectroscopy (MRS) of plasma identifies circulating metabolites that can allow detection of cancers such as PDAC that have highly dysregulated metabolism.
Methods: We first acquired 1H MR spectra of human plasma samples classified as normal, benign pancreatic disease and malignant (PDAC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!