The thickness of thin silica layers in the submicrometer range, i.e., between about 150 and 700 nm, was determined by near-infrared (NIR) reflection spectroscopy. Silica layers were prepared by spin-coating of perhydropolysilazane (PHPS) on silicon wafers or poly(ethylene terephthalate) (PET) foil and subsequent conversion of the PHPS into SiO(x) by vacuum ultraviolet (VUV) irradiation at 172 nm. Since the NIR spectra of the inorganic layers do not show overtone and combination bands, analysis is based on tiny differences in reflectance of samples provided with layers of different thicknesses. Quantitative investigations were carried out by use of chemometric approaches on the basis of the partial least squares (PLS) algorithm. Optimization of the chemometric models was achieved by systematic variation of the preprocessing of the spectra before application of the PLS regression. The root mean square error of prediction (RMSEP) and the coefficient of determination R(2) were used for the evaluation of the various pretreatment strategies. Reference data for the calibration procedures were obtained by means of gravimetry. The maximum error for the determination of the thickness was estimated to be on the order of 20%. The method was used to monitor the homogeneity of the thickness of silica layers made by use of a pilot scale coating machine. Thickness profiles recorded by NIR spectroscopy showed clear differences between layers with uniform or non-uniform quality of the application. Moreover, a close correlation of the profiles with the average coating weights determined by gravimetry was found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/000370209787391932 | DOI Listing |
Micromachines (Basel)
January 2025
Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.
View Article and Find Full Text PDFSmall Methods
January 2025
Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.
Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.
View Article and Find Full Text PDFGels
January 2025
Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Prosthetic Dentistry Discipline, Department 4-Prosthodontics and Dental Materials, Faculty of Dental Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Air particle abrasion (APA) is a common surface preparation method in dentistry, particularly for improving bond strength to dentin. This review evaluates the influence of APA on dentin adhesion. : A systematic literature search from 2018 to 2023 was conducted according to PRISMA-ScR guidelines.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4 6708 WE Wageningen, The Netherlands. Electronic address:
Unwanted nonspecific adsorption caused by biomolecules influences the lifetime of biomedical devices and the sensing performance of biosensors. Previously, we have designed B-M-E triblock proteins that rapidly assemble on inorganic surfaces (gold and silica) and render those surfaces antifouling. The B-M-E triblock proteins have a surface-binding domain B, a multimerization domain M and an antifouling domain E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!