A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ex vivo analysis of rotational stiffness of different osteosynthesis techniques in mouse femur fracture. | LitMetric

The various molecular mechanisms of cell regeneration and tissue healing can best be studied in mouse models with the availability of a wide range of monoclonal antibodies and gene-targeted animals. The influence of the mechanical stability of individual stabilization techniques on the molecular mechanisms of fracture healing has not been completely elucidated yet. Although during recent years several osteosynthesis techniques have been introduced in mouse fracture models, no comparative study on fracture stabilization is available yet. We therefore analyzed herein in a standardized ex vivo setup the rotational stiffness of seven different osteosynthesis techniques using osteotomized right cadaver femora of CD-1 mice. Uninjured femora without osteotomy served as controls. Femur stabilization with a locking plate or an external fixator resulted in a rotational stiffness almost similar to the intact femur. The use of a "pin-clip" device, a "locking nail," a "mouse nail," or an "intramedullary screw" produced a lower torsional stiffness, which, however, was still significantly higher than that achieved with the widely applied conventional pin. By the use of the presented data a more specific choice of stabilization technique will be possible according to the various questions concerning molecular aspects in fracture healing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.20849DOI Listing

Publication Analysis

Top Keywords

rotational stiffness
12
osteosynthesis techniques
12
stiffness osteosynthesis
8
molecular mechanisms
8
fracture healing
8
fracture
5
vivo analysis
4
analysis rotational
4
stiffness
4
techniques
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!