A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational study of the heterodimerization between mu and delta receptors. | LitMetric

Computational study of the heterodimerization between mu and delta receptors.

J Comput Aided Mol Des

Institute of Biochemistry and Molecular Biology, School of Basic Medical Science, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.

Published: June 2009

A growing body of evidence indicated that the G protein coupled receptors exist as homo- or hetero-dimers in the living cell. The heterodimerization between mu and delta opioid receptors has attracted researchers' particular interests, it is reported to display novel pharmacological and signalling regulation properties. In this study, we construct the full-length 3D-model of mu and delta opioid receptors using the homology modelling method. Threading program was used to predict the possible templates for the N- and C-terminus domains. Then, a 30 ns molecular dynamics simulations was performed with each receptor embedded in an explicit membrane-water environment to refine and explore the conformational space. Based on the structures extracted from the molecular dynamics, the likely interface of mu-delta heterodimer was investigated through the analysis of protein-protein docking, cluster, shape complementary and interaction energy. The computational modelling works revealed that the most likely interface of heterodimer was formed between the transmembrane1,7 (TM1,7) domains of mu receptor and the TM(4,5) domains of delta receptor, with emphasis on mu-TM1 and delta-TM4, the next likely interface was mu(TM6,7)-delta(TM4,5), with emphasis on mu-TM6 and delta-TM4. Our results were consistent with previous reports.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-009-9262-7DOI Listing

Publication Analysis

Top Keywords

heterodimerization delta
8
delta opioid
8
opioid receptors
8
molecular dynamics
8
computational study
4
study heterodimerization
4
delta
4
receptors
4
delta receptors
4
receptors growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!