This study investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in the regulation of lipolysis in visceral (VC) and subcutaneous (SC) rat adipocytes and the molecular mechanisms involved in this process. VC (epididymal and retroperitoneal) and SC (inguinal) adipocytes were isolated from male Wistar rats (160-180 g). Adipocytes were incubated either in the absence or in the presence of the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 0-500 micromol/l). AMPK and acetyl-CoA carboxylase (ACC) phosphorylation, basal and epinephrine-stimulated (100 nmol/l) glycerol release, and hormone-sensitive lipase (HSL) phosphorylation and activity were determined. AICAR-induced (500 micromol/l) AMPK activation inhibited basal glycerol release by approximately 42, 41, and 44% in epididymal, retroperitoneal, and inguinal adipocytes, respectively. Epinephrine-stimulated glycerol release was almost completely prevented by AICAR treatment in adipocytes from all fat depots. The AMPK inhibitor compound C (20 micromol/l) prevented AICAR-induced phosphorylation of AMPK and significantly increased basal (approximately 1.3-, 1.4-, and 1.7-fold) and epinephrine-stimulated (approximately 1.3-, 1.2-, 1.4-fold) glycerol release in epididymal, retroperitoneal, and inguinal adipocytes, respectively. AICAR increased phosphorylation of HSL(Ser565) and inhibited epinephrine-induced phosphorylation of HSL(Ser563) and HSL(Ser660). This was also accompanied by a 73% reduction in epinephrine-stimulated HSL activity. Compound C prevented the phosphorylation of HSL(Ser565) induced by AICAR and partially prevented the inhibitory effect of this drug on basal and epinephrine-stimulated lipolysis in adipocytes in VC and SC fat depots. In summary, despite different fat depots eliciting distinct rates of lipolysis, acute AICAR-induced AMPK activation suppressed HSL phosphorylation/activation and exerted similar antilipolytic effects on both VC and SC adipocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/oby.2008.645 | DOI Listing |
Small
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea.
The self-replication of misfolded prion protein (PrP) aggregates is the major pathological event of different prion diseases, affecting mammal brains by cross-species transmission. Here, the structural modulation of PrP aggregates are reported by activated carbon materials upon near-infrared (NIR) light irradiation. Activated carbon cobalt (ACC) nanosheets are synthesized using glycerol and metal salts to utilize the charge carriers released under NIR light exposure.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.
Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.
View Article and Find Full Text PDFOsteoarthritis Cartilage
December 2024
Rheumatology, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland. Electronic address:
Objective: Bone marrow adipose tissue (BMAT) is emerging as an important regulator of bone formation and energy metabolism. Lipolysis of BMAT releases glycerol and fatty acid substrates that are catabolized by osteoblasts. Here, we investigated whether BMAT lipolysis is involved in subchondral bone formation in hand osteoarthritis (OA).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China. Electronic address:
Adhesive hydrogels have been widely studied as wound dressings due to their excellent biocompatibility and biological activity. However, most designed hydrogels still exist limitations including potentially toxic monomer, complex preparation process and non-degradable property. Here, a natural and degradable gelatin/casein hydrogel was prepared by enzymatic cross-linking.
View Article and Find Full Text PDFDrug Deliv Transl Res
December 2024
Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA.
Poly(glycerol sebacate) (PGS) is a biodegradable, elastomeric polymer that has been explored for applications including tissue engineering, drug delivery, and wound repair. Despite its promise, its biomedical utility is limited by its rapid, and largely fixed, degradation rate. Additionally, its preparation requires prolonged curing at high temperatures, rendering it incompatible with heat-sensitive molecules, complex device geometries, and high-throughput production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!