ATP is a paracrine regulator of critical airway epithelial cell functions, but the mechanism of its release is poorly understood. Pannexin (Panx) proteins, related to invertebrate innexins, form channels (called pannexons) that are able to release ATP from several cell types. Thus, ATP release via pannexons was examined in airway epithelial cells. Quantitative RT-PCR showed Panx1 expression in normal human airway epithelial cells during redifferentiation at the air-liquid interface (ALI), at a level comparable to that of alveolar macrophages; Panx3 was not expressed. Immunohistochemistry showed Panx1 expression at the apical pole of airway epithelia. ALI cultures exposed to hypotonic stress released ATP to an estimated maximum of 255 (+/-64) nM within 1 minute after challenge (n = 6 cultures from three different lungs) or to approximately 1.5 (+/-0.4) microM, recalculated to a normal airway surface liquid volume. Using date- and culture-matched cells (each n > or = 16 from 4 different lungs), the pannexon inhibitors carbenoxolone (10 microM) and probenecid (1 mM), but not the connexon inhibitor flufenamic acid (100 microM), inhibited ATP release by approximately 60%. The drugs affected Panx1 currents in Xenopus oocytes expressing exogenous Panx1 correspondingly. In addition, suppression of Panx1 expression using lentivirus-mediated production of shRNA in differentiated airway epithelial cells inhibited ATP release upon hypotonic stress by approximately 60% as well. These data not only show that Panx1 is expressed apically in differentiated airway epithelial cells but also that it contributes to ATP release in these cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778159 | PMC |
http://dx.doi.org/10.1165/rcmb.2008-0367OC | DOI Listing |
Front Cell Dev Biol
January 2025
Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.
Consolidation with PD-1/PD-L1-based immune checkpoint blockade after concurrent platinum-based chemo-radiotherapy has become the new standard of care for advanced stage III unresectable non-small cell lung cancer (NSCLC) patients. In order to further improve therapy outcomes, innovative combinatorial treatment strategies aim to target additional immunosuppressive barriers in the tumor microenvironment such as the CD73/adenosine pathway. CD73 and adenosine are known as crucial endogenous regulators of lung homeostasis and inflammation, but also contribute to an immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.
Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Physiology, China Medical University, Taichung, 404328, Taiwan.
Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:
Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.
Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.
Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!