Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Postnatally, endocrine GH is primarily produced by pituitary somatotrophs. GH is, however, also produced in extrapituitary sites, including tissues of the developing nervous system such as the neural retina. Whereas GH roles in the nervous system are starting to emerge, they are still largely unknown. We show here that GH in the neural retina is mainly present in the axons of retinal ganglion cells (RGCs) in embryonic day (E) 4-12 chick embryos, but it is no longer present at E14-18. This temporal window corresponds to the period of RGC axon growth. GH receptor mRNA was also detected within cells of the E7 RGC layer and GH receptor protein colocalized with GH in RGC axons. The possibility that GH promotes axon growth was thus investigated. Exogenous GH induced a significant increase in axon elongation at 10(-9) and 10(-6) M in E7 RGC culture purified by immunopanning. RNA interference-mediated gene silencing was used to examine whether endogenous GH similarly alters axon outgrowth. The ability of GH small-interfering RNA to knock down GH was first tested using HEK cells on a LacZ-cGH expression plasmid and found to reach 90%. Upon transfection of GH small-interfering RNA to immunopanned RGC culture, a 63% knockdown of endogenous GH was detected and RGC axon length was found to be reduced by 40%. Taken together, these data suggest that GH acts as an autocrine or paracrine signaling molecule to promote axon growth in a developing nervous tissue, the neural retina of chick embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2008-1242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!