Angelman syndrome (AS) is a genetic disorder caused by a deficiency of UBE3A imprinted gene expression from the maternal chromosome 15. In 10% of AS cases the genetic cause is a mutation affecting the maternal copy of the UBE3A gene. In two large Spanish series of clinically stringently selected and nonstringently selected patients, we have identified 11 pathological mutations--eight of them novel mutations--and 14 sequence changes considered polymorphic variants. Remarkably, single nucleotide substitutions are more likely to be inherited, while multiple nucleotide deletions or insertions are less frequently inherited, thus indicating that single nucleotide substitutions are more likely to originate from the paternal germline. Additionally, there seems to be a different distribution of nucleotide changes and multiple nucleotide deletions or insertions along the UBE3A gene sequence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.32659 | DOI Listing |
PLoS One
January 2025
Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China.
Background: Systemic lupus erythematosus (SLE) is a complex and incurable autoimmune disease, so several drug remission for SLE symptoms have been developed and used at present. However, treatment varies by patient and disease activity, and existing medications for SLE were far from satisfactory. Novel drug targets to be found for SLE therapy are still needed.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
We applied an MRI technique diffusion tensor imaging along the perivascular space (DTI-ALPS) for assessing glymphatic system (GS) in a genome-wide association study (GWAS) and phenome-wide association study (PheWAS) of 40,486 European individuals. Exploratory analysis revealed 17 genetic loci significantly associating with the regional DTI-ALPS index. We found 58 genes, including and , which prioritized in the DTI-ALPS index subtypes and associated with neurodegenerative diseases.
View Article and Find Full Text PDFPlant Physiol
January 2025
Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany.
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs).
View Article and Find Full Text PDFHLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-DPB1*1617:01 differs from HLA-DPB1*05:01:01:01 by one non-synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russia.
The new HLA-B*52:130 allele showed one nonsynonymous nucleotide difference compared to the HLA-B*52:01:01:01 allele in codon 170.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!