The nephrotoxicity of amikacin (AK) was prevented with pentoxifylline (PTX) in a rat model. Rats were received a single injection of AK (1.2 g/kg, i.p.) with or without PTX pretreatment (25 mg/kg, orally). Renal morphology was investigated by light microscopy. Tissue samples and trunk blood were also obtained to determine renal malondialdehyde (MDA), blood urea nitrogen (BUN), and creatinine (Cr) levels. MDA production was found to be higher in AK group. PTX administration caused a significant decrease in MDA production. Morphological damage in rats given AK was severe in the kidney, whereas in rats given AK plus PTX, no histological changes occurred. It is concluded that PTX could be useful for reducing the nephrotoxic effects of AK.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08860220802595492DOI Listing

Publication Analysis

Top Keywords

mda production
8
ptx
5
effects pentoxifylline
4
pentoxifylline amikacin-induced
4
amikacin-induced nephrotoxicity
4
rats
4
nephrotoxicity rats
4
rats nephrotoxicity
4
nephrotoxicity amikacin
4
amikacin prevented
4

Similar Publications

Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0-100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results.

View Article and Find Full Text PDF

Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy.

Int J Nanomedicine

January 2025

College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.

Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.

View Article and Find Full Text PDF

Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy.

Nanoscale Adv

January 2025

Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain

Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms.

View Article and Find Full Text PDF

In recent years, Wireless Sensor Networks (WSN) have become vital because of their versatility in numerous applications. Nevertheless, the attain problems like inherent noise, and limited node computation capabilities, result in reduced sensor node lifespan as well as enhanced power consumption. To tackle such problems, this study develops a Modified-Distributed Arithmetic-Offset Binary Coding-based Adaptive Finite Impulse Response (MDA-OBC based AFIR) framework.

View Article and Find Full Text PDF

Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!