Converging evidence leaves little doubt that a change in the conformation of prion protein (PrP(C)) from a mainly alpha-helical to a beta-sheet rich PrP-scrapie (PrP(Sc)) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrP(Sc), nor the normal function of PrP(C) is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrP(C) mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrP(C) increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrP(C) on ferritin iron content is enhanced by stimulating PrP(C) endocytosis, and reversed by cross-linking PrP(C) on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP(102L) decreases ferritin iron content significantly relative to PrP(C) expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrP(C) nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrP(C) in cellular iron uptake and transport to ferritin, and dysfunction of PrP(C) as a significant contributing factor of brain iron imbalance in prion disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637434 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004468 | PLOS |
Hematology
December 2025
The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan Province, People's Republic of China.
To investigate the role of ALKBH3 in acute myeloid leukemia (AML), we constructed an animal model of xenotransplantation of AML. Our study demonstrated that ALKBH3-mediated m1A demethylation inhibits ferroptosis in KG-1 cells by increasing ATF4 expression, thus promoting the development of AML. These findings suggest that reducing ALKBH3 expression may be a potential strategy to mitigate AML progression.
View Article and Find Full Text PDFis a common, waterborne gastrointestinal parasite that causes diarrheal disease worldwide. Currently there are no effective therapeutics to treat cryptosporidiosis in at-risk populations. Since natural products are a known source of anti-parasitic compounds, we screened a library of extracts and pure natural product compounds isolated from bacteria and fungi collected from subterranean environments for activity against .
View Article and Find Full Text PDFChronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks () have recently drawn huge interest from researchers.
View Article and Find Full Text PDFRegen Ther
March 2025
Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.
Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).
J Mater Sci Mater Med
January 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!