Nanomoulding with amorphous metals.

Nature

Mechanical Engineering, Yale University, New Haven, Connecticut 06511, USA.

Published: February 2009

Nanoimprinting promises low-cost fabrication of micro- and nano-devices by embossing features from a hard mould onto thermoplastic materials, typically polymers with low glass transition temperature. The success and proliferation of such methods critically rely on the manufacturing of robust and durable master moulds. Silicon-based moulds are brittle and have limited longevity. Metal moulds are stronger than semiconductors, but patterning of metals on the nanometre scale is limited by their finite grain size. Amorphous metals (metallic glasses) exhibit superior mechanical properties and are intrinsically free from grain size limitations. Here we demonstrate direct nanopatterning of metallic glasses by hot embossing, generating feature sizes as small as 13 nm. After subsequently crystallizing the as-formed metallic glass mould, we show that another amorphous sample of the same alloy can be formed on the crystallized mould. In addition, metallic glass replicas can also be used as moulds for polymers or other metallic glasses with lower softening temperatures. Using this 'spawning' process, we can massively replicate patterned surfaces through direct moulding without using conventional lithography. We anticipate that our findings will catalyse the development of micro- and nanoscale metallic glass applications that capitalize on the outstanding mechanical properties, microstructural homogeneity and isotropy, and ease of thermoplastic forming exhibited by these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature07718DOI Listing

Publication Analysis

Top Keywords

metallic glasses
12
metallic glass
12
amorphous metals
8
grain size
8
mechanical properties
8
metallic
6
nanomoulding amorphous
4
metals nanoimprinting
4
nanoimprinting promises
4
promises low-cost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!