Adenosine A(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice.

Neuropsychopharmacology

Institute of Pharmacology and Neurosciences, Faculty of Medicine, Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal.

Published: June 2009

Previous in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation (LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A(2A) receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A(2A) receptor antagonist, SCH58261, upon a well-known associative learning paradigm-classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus (US). A single electrical pulse was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS-US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.) -injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261-injected mice. In conclusion, the endogenous activation of adenosine A(2A) receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2009.8DOI Listing

Publication Analysis

Top Keywords

associative learning
16
adenosine a2a
8
a2a receptor
8
ca3-ca1 synapse
8
behaving mice
8
endogenous activation
8
activation adenosine
8
a2a receptors
8
adenosine
5
learning
5

Similar Publications

Introduction: Women with early bilateral salpingo-oophorectomy (BSO) have greater Alzheimer's disease (AD) risk than women with spontaneous menopause (SM), but the pathway toward this risk is understudied. Considering associative memory deficits may reflect early signs of AD, we studied how BSO affected brain activity underlying associative memory.

Methods: Early midlife women with BSO (with and without 17β-estradiol therapy [ET]) and age-matched controls (AMCs) with intact ovaries completed a face-name associative memory task during functional magnetic resonance imaging.

View Article and Find Full Text PDF

Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.

View Article and Find Full Text PDF

In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms.

View Article and Find Full Text PDF

Neural networks with quantum states of light.

Philos Trans A Math Phys Eng Sci

December 2024

Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) UIB-CSIC, Campus Universitat Illes Balears, Palma de Mallorca 07122, Spain.

Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing.

View Article and Find Full Text PDF

Compulsion is associated with impaired goal-directed and habitual learning and responding in obsessive-compulsive disorder.

Int J Clin Health Psychol

December 2024

Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Background: Previous research has found that compulsions in obsessive-compulsive disorder (OCD) are associated with an imbalance between goal-directed and habitual responses. However, the cognitive mechanisms underlying how goal-directed and habitual behaviors are learned, and how these learning deficits affect the response process, remain unclear. The present study aimed to investigate these cognitive mechanisms and examine how they were involved in the mechanism of compulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!