T-type voltage-dependent calcium channels may play an important role in synaptic plasticity, but lack of specific antagonists has hampered investigation into this possible function. We investigated the role of the T-type channel in a canonical model of in-vivo cortical plasticity triggered by monocular deprivation. We identified a compound (TTA-I1) with subnanomolar potency in standard voltage clamp assays and high selectivity for the T-type channel. When infused intracortically, TTA-I1 reduced cortical plasticity triggered by monocular deprivation while preserving normal visual response properties. These results show that the T-type calcium channel plays a central role in cortical plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902375PMC
http://dx.doi.org/10.1097/WNR.0b013e3283200111DOI Listing

Publication Analysis

Top Keywords

cortical plasticity
16
t-type calcium
8
calcium channels
8
t-type channel
8
plasticity triggered
8
triggered monocular
8
monocular deprivation
8
t-type
5
plasticity
5
channels regulate
4

Similar Publications

Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy.

Int J Mol Sci

December 2024

Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.

Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.

View Article and Find Full Text PDF

Electrophysiology-based screening identifies neuronal HtrA serine peptidase 2 (HTRA2) as a synaptic plasticity regulator participating in tauopathy.

Transl Psychiatry

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.

Long-term potentiation (LTP) and long-term depression (LTD) are widely used to study synaptic plasticity. However, whether proteins regulating LTP and LTD are altered in cognitive disorders and contribute to disease onset remains to be determined. Herein, we induced LTP and LTD in the hippocampal CA3-CA1 Schaffer collateral pathway, respectively, and then performed proteomic analysis of the CA1 region.

View Article and Find Full Text PDF

In literate adults, an area along the left posterior fusiform gyrus that is often referred to as the "visual word form area" (VWFA) responds particularly strongly to written characters compared to other visually similar stimuli. Theoretical accounts differ in whether they attribute the strong left-lateralization of the VWFA to a left-hemisphere bias towards visual features used in script, to competition of visual word form processing with that of other visual stimuli processed in the same general cortical territory (especially faces), or to the well-established left-lateralization of the language system.Here we used functional magnetic resonance imaging to test the last hypothesis by investigating lateralization of the VWFA in participants (male and female) who have right-hemisphere language due to a large left-hemisphere perinatal stroke.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!