The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21(Cip1)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap(-/-) females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap(-/-) ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap(-/-) DNA damage phenotype. Importantly, the DNA damage observed in dap(-/-) ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap(-/-) ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663936 | PMC |
http://dx.doi.org/10.1091/mbc.e08-09-0916 | DOI Listing |
Reprod Sci
November 2024
Division of Endocrinology, Central Drug Research Institute, Uttar Pradesh, Lucknow, India.
Retinoic acid (RA) regulates all four major events in spermatogenesis; spermatogonial differentiation, meiotic entry, spermiogenesis, and spermiation. For the pre-meiotic phase, Sertoli cells are the source of RA and for the post-meiotic phase, pachytene spermatocytes are the source of RA. While the entire spermatogenic process is regulated by RA, how each of these phases is regulated by RA remains completely unknown.
View Article and Find Full Text PDFG3 (Bethesda)
August 2024
Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755.
Accurate chromosome segregation during meiosis requires the maintenance of sister chromatid cohesion, initially established during premeiotic S phase. In human oocytes, DNA replication and cohesion establishment occur decades before chromosome segregation and deterioration of meiotic cohesion is one factor that leads to increased segregation errors as women age. Our previous work led us to propose that a cohesion rejuvenation program operates to establish new cohesive linkages during meiotic prophase in Drosophila oocytes and depends on the cohesin loader Nipped-B and the cohesion establishment factor Eco.
View Article and Find Full Text PDFMol Aspects Med
June 2024
Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan. Electronic address:
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2024
Donald Danforth Plant Science Center, St. Louis, MO 63132.
Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize () and rice (), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley () and wheat (). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies.
View Article and Find Full Text PDFReproductive phasiRNAs are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize () and rice (), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley () and wheat (). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!