Analysis of time series of images can quantify plant growth and development, including the effects of genetic mutations (phenotypes) that give information about gene function. Here is demonstrated a software application named HYPOTrace that automatically extracts growth and shape information from electronic gray-scale images of Arabidopsis (Arabidopsis thaliana) seedlings. Key to the method is the iterative application of adaptive local principal components analysis to extract a set of ordered midline points (medial axis) from images of the seedling hypocotyl. Pixel intensity is weighted to avoid the medial axis being diverted by the cotyledons in areas where the two come in contact. An intensity feature useful for terminating the midline at the hypocotyl apex was isolated in each image by subtracting the baseline with a robust local regression algorithm. Applying the algorithm to time series of images of Arabidopsis seedlings responding to light resulted in automatic quantification of hypocotyl growth rate, apical hook opening, and phototropic bending with high spatiotemporal resolution. These functions are demonstrated here on wild-type, cryptochrome1, and phototropin1 seedlings for the purpose of showing that HYPOTrace generated expected results and to show how much richer the machine-vision description is compared to methods more typical in plant biology. HYPOTrace is expected to benefit seedling development research, particularly in the photomorphogenesis field, by replacing many tedious, error-prone manual measurements with a precise, largely automated computational tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663732 | PMC |
http://dx.doi.org/10.1104/pp.108.134072 | DOI Listing |
Int J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).
View Article and Find Full Text PDFPlant J
December 2024
RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
Brassinosteroids (BRs) are plant steroid hormones that regulate plant development and environmental responses. BIL1/BZR1, a master transcription factor that regulates approximately 3000 genes in the BR signaling pathway, is transported to the nucleus from the cytosol in response to BR signaling; however, the molecular mechanism underlying this process is unknown. Here, we identify a novel BR signaling factor, BIL7, that enhances plant growth and positively regulates the nuclear accumulation of BIL1/BZR1 in Arabidopsis thaliana.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:
TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China.
The Arabidopsis transcription factor ATAF1 negatively regulates thermomorphogenesis by inhibiting the expression of key genes involved in thermoresponsive elongation. DET1-mediated ubiquitination promotes ATAF1 degradation. In response to warmer, non-stressful average temperatures, plants have evolved an adaptive morphologic response called thermomorphogenesis to increase their fitness.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA. Electronic address:
Rapid cell expansion pushes the Arabidopsis hypocotyl (juvenile stem) through the soil until blue light, acting first through phototropin 1 (phot1) and then through cryptochrome 1 (cry1), suppresses elongation to produce a length characteristic of established, photosynthetically capable seedlings. To determine where these two different blue-light receptors act to suppress hypocotyl elongation, we measured relative elemental growth rate, specifically along the hypocotyl midline at 5-min intervals before and during blue light, using a machine-learning-based image analysis pipeline designed specifically for this kinematic analysis of growth. In darkness, hypocotyl material expanded most rapidly (approximately 4% h) in a broad zone approximately 1 mm below the apical terminus of the hypocotyl (cotyledonary node).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!