Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads to optimal clinical efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665079PMC
http://dx.doi.org/10.1074/jbc.M809709200DOI Listing

Publication Analysis

Top Keywords

igf-1 igf-2
16
allosteric igf-1
12
igf-2 blockers
12
growth factor
8
factor receptor
8
antibodies
8
ligand-blocking properties
8
receptor igf-1r
8
binding igf-1
8
blockers allosteric
8

Similar Publications

Background: In people with HIV (PWH) who are virally suppressed (VS) on antiretroviral therapy (ART), abdominal obesity (AO) is linked to neurocognitive impairment (NCI), potentially due to visceral adiposity, inflammation, and reduced insulin-like growth factor 1 (IGF-1). Tesamorelin, a growth hormone-releasing hormone, reduces AO and increases IGF-1, suggesting it might mitigate NCI in VS PWH.

Methods: This 6-month, Phase II randomized, open-label clinical trial compared Tesamorelin versus standard-of-care (SOC) for NCI in abdominally obese PWH.

View Article and Find Full Text PDF

Serum CS/DS, IGF-1, and IGFBP-3 as Biomarkers of Cartilage Remodeling in Juvenile Idiopathic Arthritis: Diagnostic and Therapeutic Implications.

Biomolecules

November 2024

Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland.

Cartilage destruction in juvenile idiopathic arthritis (JIA) is diagnosed, often too late, on basis of clinical evaluation and radiographic imaging. This case-control study investigated serum chondroitin/dermatan sulfate (CS/DS) as a potential biochemical marker of cartilage metabolism, aiming to improve early diagnosis and precision treatment for JIA. We also measured the levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) (using ELISA methods) in JIA patients ( = 55) both before and after treatment (prednisone, sulfasalazine, methotrexate, administered together), and analyzed their relationships with CS/DS levels.

View Article and Find Full Text PDF

Identification of Three Genotypes in Largemouth Bass () and Their Differential Physiological Responses to Feed Domestication.

Animals (Basel)

December 2024

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

Diverse feeding habits in teleosts involve a wide range of appetite-regulating factors. As an appetite-suppressing gene, the polymorphisms of in largemouth bass () were validated via sequencing and high-resolution melting (HRM). The frequency distribution of different genotypes were analyzed in two populations, and physiological responses of different genotypes to feed domestication were investigated.

View Article and Find Full Text PDF

Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings.

Gen Comp Endocrinol

January 2025

Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation.

View Article and Find Full Text PDF

Lung cancer is a prevalent and very aggressive sickness that will likely claim 1.8 million lives by 2022, with an estimated 2.2 million additional cases expected worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!