Few studies investigate the impact of air pollution on the leading cause of infant morbidity, acute bronchiolitis. We investigated the influence of PM(2.5) and other metrics of traffic-derived air pollution exposure using a matched case-control dataset derived from 1997 to 2003 birth and infant hospitalization records from the Puget Sound Region, Washington State. Mean daily PM(2.5) exposure for 7, 30, 60 and lifetime days before case bronchiolitis hospitalization date were derived from community monitors. A regional land use regression model of NO(2) was applied to characterize subject's exposure in the month prior to case hospitalization and lifetime average before hospitalization. Subject's residential proximity within 150 m of highways, major roadways, and truck routes was also assigned. We evaluated 2604 (83%) cases and 23,354 (85%) controls with information allowing adjustment for mother's education, mother's smoking during pregnancy, and infant race/ethnicity. Effect estimates derived from conditional logistic regression revealed very modest increased risk and were not statistically significant for any of the exposure metrics in fully adjusted models. Overall, risk estimates were stronger when restricted to bronchiolitis cases attributed to respiratory syncytial virus (RSV) versus unspecified and for longer exposure windows. The adjusted odds ratio (OR(adj)) and 95% confidence interval per 10 mcg/m(3) increase in lifetime PM(2.5) was 1.14, 0.88-1.46 for RSV bronchiolitis hospitalization. This risk was also elevated for infants who resided within 150 m of a highway (OR(adj) 1.17, 0.95-1.44). This study supports a developing hypothesis that there may be a modest increased risk of bronchiolitis attributable to chronic traffic-derived particulate matter exposure particularly for infants born just before or during peak RSV season. Future studies are needed that can investigate threshold effects and capture larger variability in spatial contrasts among populations of infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925442 | PMC |
http://dx.doi.org/10.1016/j.envres.2008.11.006 | DOI Listing |
Small
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Atmospheric Pollution Research-National Research Council (IIA-CNR), Research Area of Rome 1, Strada Provinciale 35d, Montelibretti, 9-00010 Roma, Italy.
Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shanghai Institute of Satellite Engineering, Shanghai 201109, China.
Accurate and timely air quality forecasting is crucial for mitigating pollution-related hazards and protecting public health. Recently, there has been a growing interest in integrating visual data for air quality prediction. However, some limitations remain in existing literature, such as their focus on coarse-grained classification, single-moment estimation, or reliance on indirect and unintuitive information from visual images.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Inmunotek SL Laboratories, 28000 Madrid, Spain.
Climate change is significantly altering the dynamics of airborne allergens, affecting their seasonality, allergenicity, and geographic distribution, which correlates with increasing rates of allergic diseases. This study investigates aeroallergen sensitization among populations from Tenerife, Spain, and Lima, Peru-two regions with similar climates but distinct socio-economic conditions. Our findings reveal that Spanish individuals, particularly those with asthma, demonstrate higher sensitization levels to a broader range of allergens, especially mites, with 85% of participants reacting to at least one mite allergen.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania.
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!