Sperm hyperactivation is characterised by high-amplitude, asymmetrical flagellar bending and is required to penetrate the oocyte zona pellucida. It was proposed that hyperactivation also enables spermatozoa to reach the oocyte by assisting escape from the oviductal sperm reservoir. To test this hypothesis, the behaviour of CatSper-null mouse spermatozoa in the oviduct was compared with that of spermatozoa from heterozygotes. CatSper(-/-) males are infertile because their spermatozoa fail to hyperactivate, whereas spermatozoa from CatSper(+/-) males have normal amounts of CatSper proteins and can hyperactivate. Males were mated with wild-type females on the morning of ovulation. Oviducts were obtained 1 or 4 h later, and behaviour of spermatozoa was examined using transillumination. At 1 h, null mutant spermatozoa remained attached by their heads to oviductal epithelium in the reservoir, whereas spermatozoa from heterozygotes detached from the oviductal epithelium after performing deep asymmetrical flagellar bends. At 4 h, 50 to 200 CatSper(+/-) spermatozoa were still seen in the oviducts; in contrast, only one CatSper(-/-) spermatozoon was found. CatSper(-/-) spermatozoa were lost from the oviducts after failing to detach from the epithelium in a timely manner, thus demonstrating that hyperactivation is required by spermatozoa to ascend beyond the oviductal reservoir.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/rd08183 | DOI Listing |
Reprod Domest Anim
January 2025
Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University of Rawalpindi, Rawalpindi, Pakistan.
A triad of enzymatic antioxidants viz., catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) constitutes a first line of defence against any redox imbalances in the semen. Cryopreservation enabling long term storage of semen also prompts generation of surplus reactive oxygen species (ROS) in the cells with waned antioxidants, hampering the full exploitation of this process.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
Background: Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR.
Methods: Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring.
Cell Commun Signal
January 2025
Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
Background: Asthenozoospermia (ASZ) accounts for about 20-40% of male infertility, and genetic factors, contributing to 30-40% of the causes of ASZ, still need further exploration. Radial spokes (RSs), a T-shaped macromolecular complex, connect the peripheral doublet microtubules (DMTs) to a central pair (CP), forming a CP-RS-DMT structure to regulate the beat frequency and amplitude of sperm flagella. To date, many components of RSs and their functions in human sperm flagella remain unclear.
View Article and Find Full Text PDFScience
January 2025
Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!