Over the past two decades, extensive molecular studies have identified multiple tropomyosin isoforms existing in all mammalian cells and tissues. In humans, tropomyosins are encoded by TPM1 (alpha-Tm, 15q22.1), TPM2 (beta-Tm, 9p13.2-p13.1), TPM3 (gamma-Tm, 1q21.2) and TPM4 (delta-Tm, 19p13.1) genes. Through the use of different promoters, alternatively spliced exons and different sites of poly(A) addition signals, at least 22 different tropomyosin cDNAs with full-length open reading frame have been cloned. Compelling evidence suggests that these isoforms play important determinants for actin cytoskeleton functions, such as intracellular vesicle movement, cell migration, cytokinesis, cell proliferation and apoptosis. In vitro biochemical studies and in vivo localization studies suggest that different tropomyosin isoforms have differences in their actin-binding properties and their effects on other actin-binding protein functions and thus, in their specification ofactin microfilaments. In this chapter, we will review what has been learned from experimental studies on human tropomyosin isoforms about the mechanisms for differential localization and functions of tropomyosin. First, we summarize current information concerning human tropomyosin isoforms and relate this to the functions of structural homologues in rodents. We will discuss general strategies for differential localization oftropomyosin isoforms, particularly focusing on differential protein turnover and differential isoform effects on other actin binding protein functions. We will then review tropomyosin functions in regulating cell motility and in modulating the anti-angiogenic activity of cleaved high molecular weight kininogen (HKa) and discuss future directions in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-0-387-85766-4_16 | DOI Listing |
Unlabelled: Stress affects gastrointestinal (GI) function causing dysmotility, especially in patients. GI motility is regulated by the enteric nervous system (ENS), suggesting that stress alters ENS biology to cause dysmotility. While stress increases glucocorticoid levels through the hypothalamus-pituitary-adrenal axis, how glucocorticoids affect GI motility is not known.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210.
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFJ Clin Periodontol
February 2025
Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.
Aim: To discover new salivary biomarkers to diagnose periodontitis and evaluate the impact of age and smoking on predictive capacity.
Material And Methods: Saliva samples were collected from 44 healthy periodontal individuals and 41 with periodontitis. Samples were analysed by sequential window acquisition of all theoretical mass spectra (SWATH-MS), and proteins were identified by employing the UniProt database.
Int J Mol Sci
December 2024
Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
Pediatric dilated cardiomyopathy (DCM) is a rare heart muscle disorder leading to the enlargement of all chambers and systolic dysfunction. We identified a novel de novo variant, c.88A>G (p.
View Article and Find Full Text PDFBiol Pharm Bull
November 2024
Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!