[Safe management of waste generated in health care institutions especially with infectious waste].

Przegl Epidemiol

Zakład Zwalczania Skazeń Biologicznych Narodowego Instytutu Zdrowia Publicznego, Państwowego Zakładu Higieny, Warszawa.

Published: April 2009

Health care institutions generate variable waste, including infectious. Since the microorganism can survive on non alive surfaces for up to dozen or so mouth infectious medical waste can be real health risk for patients and personnel. Then it is very important to prepare and introduce the plan of waste management. It must be done by the adequate team. The members of this committee should be representatives from all departments. The plan of management waste from health can institutions include the segregation of waste and management (collecting, storage, transport, neutralization).

Download full-text PDF

Source

Publication Analysis

Top Keywords

management waste
8
health care
8
care institutions
8
waste management
8
waste
6
[safe management
4
waste generated
4
health
4
generated health
4
institutions infectious
4

Similar Publications

Microbial biopesticides: A one health perspective on benefits and risks.

One Health

June 2025

Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.

Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.

View Article and Find Full Text PDF

Sustainability and environmental protection are reshaping industries, including construction, where sustainability plays a crucial role in its influence on global resource consumption and waste management. The current study has developed a reusable cement material by photo-chemical surface modification of marble powder, achieved by reacting glycidyl methacrylate with carbonate functionality. This innovative modified marble powder boosts the reusability of construction materials, unlocking new possibilities for sustainable building practices.

View Article and Find Full Text PDF

Geopolymerization is a soil improvement technique widely used for waste management in recent years. This study explores the potential of geopolymerization for roadbed improvement using waste materials. Recycled glass powder (RGP) and calcium carbide residue (CCR) were investigated as precursors and alkaline activators, respectively, to enhance the properties of silty sand soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!