Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata.

J Environ Sci (China)

Department of Chemical Science and Engineering, Tokyo National College of Technology, 1220-2 Kunugida, Hachioji, Tokyo 193-0997, Japan.

Published: March 2009

Arsenic (As) speciation for the phytoremediation by the Chinese brake fern was studied. In particular, the mechanism of how plants induce compounds containing thiol (SH) and proteins by As exposure in terms of the relationship between As and phosphate uptaken into plant cells was examined. Pteris vittata callus could efficiently reduce As(V) to As(III) by the rapid introduction of reductase and synthesize thiols leading to phytochelatins production. Furthermore, Pteris vittata could control phosphate concentration in the cells corresponding to the concentration of arsenite and arsenate. To our best knowledge, this is the first report to show the mechanisms of such high As tolerance of Pteris vittata using their callus in terms of in vitro approach for the analysis of As speciation and metabolism route.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(08)62550-4DOI Listing

Publication Analysis

Top Keywords

pteris vittata
16
arsenic speciation
8
speciation phytoremediation
8
phytoremediation chinese
8
chinese brake
8
brake fern
8
vittata callus
8
pteris
4
fern pteris
4
vittata
4

Similar Publications

Arsenic modifies the microbial community assembly of soil-root habitats in .

ISME Commun

January 2025

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies.

View Article and Find Full Text PDF

enhances L. arsenic resistance and accumulation by mediating the rapid reduction and transport of arsenic in roots.

Front Plant Sci

November 2024

Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China.

Arbuscular mycorrhizal fungi (AMF) have been widely shown to significantly promote the growth and recovery of L. growth and repair under arsenic stress; however, little is known about the molecular mechanisms by which AMF mediate the efficient uptake of arsenic in this species. To understand how AMF mediate arsenic metabolism under arsenic stress, we performed root transcriptome analysis before and after () colonization.

View Article and Find Full Text PDF

Arsenic-induced enhancement of diazotrophic recruitment and nitrogen fixation in Pteris vittata rhizosphere.

Nat Commun

November 2024

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.

Heavy metal contamination poses an escalating global challenge to soil ecosystems, with hyperaccumulators playing a crucial role in environmental remediation and resource recovery. The enrichment of diazotrophs and resulting nitrogen accumulation promoted hyperaccumulator growth and facilitated phytoremediation. Nonetheless, the regulatory mechanism of hyperaccumulator biological nitrogen fixation has remained elusive.

View Article and Find Full Text PDF

The accumulation of heavy metals (i.e., As, Cu, Ni, Pb, and Zn) in soils and native plant species near copper, nickel, and pyrite mines in Vietnam was assessed.

View Article and Find Full Text PDF

Identifying the habitat suitability of Pteris vittata in China and associated key drivers using machine learning models.

Sci Total Environ

December 2024

Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Pteris vittata (P. vittata) possesses significant potential in remediating arsenic (As) soil pollution. Understanding the habitat suitability of P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!