Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Present and future concentrations of DDT in the environment are calculated with the global multimedia model CliMoChem. Monte Carlo simulations are used to assess the importance of uncertainties in substance property data, emission rates, and environmental parameters for model results. Uncertainties in the model results, expressed as 95% confidence intervals of DDT concentrations in various environmental media, in different geographical locations, and at different points in time are typically between 1 and 2 orders of magnitude. An analysis of rank correlations between model inputs and predicted DDT concentrations indicates that emission estimates and degradation rate constants, in particular in the atmosphere, are the most influential model inputs. For DDT levels in the Arctic, temperature dependencies of substance properties are also influential parameters. A Bayesian Monte Carlo approach is used to update uncertain model inputs based on measurements of DDT in the field. The updating procedure suggests a lower value for half-life in air and a reduced range of uncertainty for Kow of DDT. As could be expected, the Bayesian updating yields model results that are closer to observations, and model uncertainties have decreased. Sensitivity analysis and Bayesian Monte Carlo approach in combination provide new insight into important processes that govern the global fate and persistence of DDT in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es801161x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!