A hexagonal microlens array directly fabricated on an indium tin oxide glass substrate by the combination of direct laser writing and inductively coupled plasma etching is demonstrated to enhance the outcoupling efficiency of the organic light emitting devices, which can avoid the loss of photons and the mechanical and thermal deformations at the glass/microlenses interface. An atomic force microscope measurement indicates the contour of the fabricated hexagonal microlens is nearly an ideal part of a hemisphere. From the comparison with the operating OLED without a microlens array, the outcoupling efficiency is enhanced more than 40% with the hexagonal microlens array on the glass substrate, and the enhanced emission from the active area of the device with the hexagonal microlens array at the viewing angles from 0 degrees to 40 degrees can clearly be seen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.48.000974 | DOI Listing |
Future far-infrared astrophysics observatories will require focal plane arrays containing thousands of ultrasensitive, superconducting detectors, each of which require efficient optical coupling to the telescope fore-optics. At longer wavelengths, many approaches have been developed, including feedhorn arrays and macroscopic arrays of lenslets. However, with wavelengths as short as 25 µm, optical coupling in the far infrared remains challenging.
View Article and Find Full Text PDFThis Letter proposes a line-scan-based light-field imaging framework that records lines of a light-field image successively to improve its spatial resolution. In this new, to the best of our knowledge, light-field imaging method, a conventional square or hexagonal microlens array is replaced with a cylindrical one. As such, the spatial resolution along the cylindrical axis remains unaffected, but angular information is recorded in the direction perpendicular to the cylindrical axis.
View Article and Find Full Text PDFNano Lett
January 2023
Institute of Physics and Center for Nanotechnology, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany.
Efficiently collecting light from single-photon emitters is crucial for photonic quantum technologies. Here, we develop and use an ultralow fluorescence photopolymer to three-dimensionally print micrometer-sized elliptical lenses on individual precharacterized single-photon emitters in hexagonal boron nitride (hBN) nanocrystals, operating in the visible regime. The elliptical lens design beams the light highly efficiently into the far field, rendering bulky objective lenses obsolete.
View Article and Find Full Text PDFMicrolens arrays on curved surfaces are regarded as critical elements of bionic compound eyes (BCEs), which exhibit the comparative advantages of a wide field of view and tracking fast-moving objects. However, the fabrication of a curved microlens array is still challenging. Along these lines, in this work, a straightforward, rapid, and low-cost technique for the fabrication of curved microlens arrays is reported by using the self-assembly technique.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2022
Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan, 46241 Republic of Korea.
As a new concept in materials design, a variety of strategies have been developed to fabricate optical microlens arrays (MLAs) that enable the miniaturization of optical systems on the micro/nanoscale to improve their characteristic performance with unique optical functionality. In this paper, we introduce a cost-effective and facile fabrication process on a large scale up to ~15 inches via sequential lithographic methods to produce thin and deformable hexagonally arranged MLAs consisting of polydimethylsiloxane (PDMS). Simple employment of oxygen plasma treatment on the prestrained MLAs effectively harnessed the spontaneous formation of highly uniform nanowrinkled structures all over the surface of the elastomeric microlenses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!