Despite their immense importance to cellular function, the precise mechanism by which chaperonins aid in the folding of other proteins remains unknown. Experimental evidence seems to imply that there is some diversity in how chaperonins interact with their substrates and this has led to a number of different models for chaperonin mechanism. Computational methods have the advantage of accessing temporal and spatial resolutions that are difficult for experimental techniques; therefore, these methods have been applied to this problem for some time. Here we review the relevant computational models for chaperonin function. We propose that these models need not be mutually exclusive and in fact can be thought of as a set of tools the chaperonin may use to aid in the folding of a diverse array of substrate proteins. We conclude with a discussion of the role of water in the chaperonin mechanism, a factor that until recently has been largely neglected by most computational studies of chaperonin function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1478-3975/6/1/015003 | DOI Listing |
J Trop Med
January 2025
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.
Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In , polyphosphates also function as inorganic molecular chaperones.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
April 2024
Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Phys Life Rev
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation. Electronic address:
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature.
View Article and Find Full Text PDFNature
January 2025
Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
The ring-shaped chaperonin T-complex protein ring complex (TRiC; also known as chaperonin containing TCP-1, CCT) is an ATP-driven protein-folding machine that is essential for maintenance of cellular homeostasis. Its dysfunction is related to cancer and neurodegenerative disease. Despite its importance, how TRiC works in the cell remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!