Recent evidence from different research areas has revealed a novel mechanism of cell-cell communication by spontaneous intercellular transfer of cellular components (ICT). Here we studied this phenomenon by co-culturing different cells that contain distinct levels of proteins or markers for the plasma membrane or cytoplasm. We found that a variety of transmembrane proteins are transferable between multiple cell types. Membrane lipids also show a high efficiency of intercellular transfer. Size-dependent cytoplasmic transfer allows exchange of cytoplasmic macromolecules up to 40 kDa between somatic cells, and up to 2000 kDa between uncommitted human precursor cells and human umbilical vein endothelial cells. Protein transfer, lipid transfer and cytoplasmic component transfer can occur simultaneously and all require direct cell-cell contact. Analyses of the properties of ICT, together with a close examination of cell-cell interactions, suggest that the spontaneous ICT of different cellular components might have a common underlying process: transient local membrane fusions formed when neighboring cells undergo close cell-cell contact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.031427 | DOI Listing |
Int J Mol Sci
January 2025
Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, 35016 Las Palmas de Gran Canaria, Spain.
In vitro models play a pivotal role in advancing our understanding of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's disease (PD and AD). Traditionally, 2D cell cultures have been instrumental in elucidating the cellular mechanisms underlying these diseases. Cultured cells derived from patients or animal models provide valuable insights into the pathological processes at the cellular level.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFBiol Cell
January 2025
Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Department of Otolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China. Electronic address:
The pathophysiological distinctions between osteoarthritis (OA) and diabetic osteoarthritis (DOA) are critical yet not well delineated. In this study, we employed single-cell RNA sequencing to clarify the unique cellular and molecular mechanisms underpinning the progression of both conditions. We identified a novel subpopulation of chondrocytes in DOA, termed 'Heat Shock' chondrocytes, marked by the expression of distinct molecular markers including HSPA1A, HSPA1B, HSPB1, and HSPA8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!