Background: Oncoprotein HCCR-1 functions as a negative regulator of the p53 and contributes breast tumorigenesis. The serum HCCR-1 assay is useful in diagnosing breast cancer and mice transgenic for HCCR developed breast cancers. But it is unknown how HCCR-1 contributes to human breast tumorigenesis.
Methods: Oncogene HCCR-1 expression levels were determined in normal breast tissues, breast cancer tissues and cancer cell lines. We examined whether HCCR-1 protein expression in breast cancer is related to different biological characteristics, including ER, PR, p53 genotype, and HER2 status in 104 primary breast cancer tissues using immunohistochemical analyses.
Results: HCCR-1 was upregulated in breast cancer cells and tissues compared with normal breast tissues. In this study, overexpression of HCCR-1 was well correlated with known breast cancer prognostic markers including the presence of steroid receptors (ER and PR), p53 mutation and high HER2 overexpression. HCCR-1 was not detected in the ER-negative, PR-negative, p53 negative and low HER2 breast cancer tissues. These data indicate that the level of HCCR-1 in breast cancer tissues is relatively well correlated with known breast cancer factors, including the HER2 overexpression, p53 mutation, and ER/PR status.
Conclusion: Determination of HCCR-1 levels as options for HER2 testing is promising although it needs further evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672955 | PMC |
http://dx.doi.org/10.1186/1471-2407-9-51 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, Duke University Medical Center, Durham, NC, USA.
Background: Bilateral risk-reducing mastectomies (RRMs) have been proven to decrease the risk of breast cancer in patients at high risk owing to family history or having pathogenic genetic mutations. However, few resources with consolidated data have detailed the patient experience following surgery. This systematic review features patient-reported outcomes for patients with no breast cancer history in the year after their bilateral RRM.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH, USA.
Cancer Causes Control
January 2025
Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY, 14214, USA.
Purpose: Historical redlining, a 1930s-era form of residential segregation and proxy of structural racism, has been associated with breast cancer risk, stage, and survival, but research is lacking on how known present-day breast cancer risk factors are related to historical redlining. We aimed to describe the clustering of present-day neighborhood-level breast cancer risk factors with historical redlining and evaluate geographic patterning across the US.
Methods: This ecologic study included US neighborhoods (census tracts) with Home Owners' Loan Corporation (HOLC) grades, defined as having a score in the Historic Redlining Score dataset; 2019 Population Level Analysis and Community EStimates (PLACES) data; and 2014-2016 Environmental Justice Index (EJI) data.
Apoptosis
January 2025
Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!