Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory.

J Chem Phys

Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

Published: February 2009

The recently proposed explicitly correlated CCSD(T)-F12x (x = a,b) approximations [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] are applied to compute equilibrium structures and harmonic as well as anharmonic vibrational frequencies for H(2)O, HCN, CO(2), CH(2)O, H(2)O(2), C(2)H(2), CH(2)NH, C(2)H(2)O, and the trans-isomer of 1,2-C(2)H(2)F(2). Using aug-cc-pVTZ basis sets, the CCSD(T)-F12a equilibrium geometries and harmonic vibrational frequencies are in very close agreement with CCSD(T)/aug-cc-pV5Z values. The anharmonic frequencies are evaluated using vibrational self-consistent field and vibrational configuration interaction methods based on automatically generated potential energy surfaces. The mean absolute deviation of the CCSD(T)-F12a/aug-cc-pVTZ anharmonic frequencies from experimental values amounts to only 4.0 cm(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3070236DOI Listing

Publication Analysis

Top Keywords

vibrational frequencies
12
explicitly correlated
8
anharmonic frequencies
8
vibrational
5
frequencies
5
accurate calculation
4
calculation vibrational
4
frequencies explicitly
4
correlated coupled-cluster
4
coupled-cluster theory
4

Similar Publications

Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.

View Article and Find Full Text PDF

Capillary Wave-Assisted Colloidal Assembly.

Langmuir

January 2025

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.

View Article and Find Full Text PDF

Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly.

View Article and Find Full Text PDF

The Cross-Sectional Association Between Ultra-Processed Food Intake and Metabolic Dysfunction-Associated Steatotic Liver Disease.

Clin Nutr ESPEN

January 2025

Section of Preventive Medicine and Epidemiology, Department of Medicine, Chobanian and Avedisian School of Medicine, Boston University; Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University. Electronic address:

Background And Aims: The prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease has increased in parallel with a rise in consumption of ultra-processed foods (UPF), but little is known about their association.

Methods: We cross-sectionally examined associations of UPF with hepatic steatosis and fibrosis in 2,458 (mean age 54 years; 55.9% women) community-dwelling adults who completed vibration-controlled transient elastography and a food frequency questionnaire.

View Article and Find Full Text PDF

Quantifying the Chirality of Vibrational Modes in Helical Molecular Chains.

Phys Rev Lett

December 2024

Tel Aviv University, University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv 69978, Israel.

Chiral phonons have been proposed to be involved in various physical phenomena, yet the chirality of molecular normal modes has not been well defined mathematically. Here we examine two approaches for assigning and quantifying the chirality of molecular normal modes in double-helical molecular wires with various levels of twist. First, associating with each normal mode a structure obtained by imposing the corresponding motion on a common origin, we apply the continuous chirality measure (CCM) to quantitatively assess the relationship between the chirality-weighted normal mode spectrum and the chirality of the underlying molecular structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!