We use a minimal system with a single micron-size bead trapped with optical tweezers to investigate the kinetics of escape under force. Surprisingly, the exponential decay of the off rate with the barrier energy is still valid close to the critical force. Hence, the high viscosity approximation derived by Kramers in the case of a high energy barrier holds even for an energy barrier close to the thermal energy. Several recent models describe a single biomolecule bond by a smooth single-barrier energy profile. When this approach is accurate enough, our result justifies the use of Kramers' approximation in the high-force regime, close to the critical force of the system, as done in recent single biomolecule bond studies.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3077010DOI Listing

Publication Analysis

Top Keywords

biomolecule bond
12
close critical
12
critical force
12
system single
8
energy barrier
8
single biomolecule
8
force
5
energy
5
force spectroscopy
4
single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!