A mild, four-step purification procedure using NaOH reflux, HCl wash, and oxidation by 4 mol % molecular oxygen at 500 degrees C was developed to purify single-walled carbon nanotubes (SWCNTs) with narrow semiconducting (n,m) distribution produced from cobalt-incorporated MCM-41 (Co-MCM-41) in order to obtain bulk low-defect-density nanotubes. Three key features of Co-MCM-41 allow this mild purification technique: (1) ultrathin silica walls versus dense silica or other crystalline oxide supports are soluble in dilute NaOH aqueous solution, which avoids the damage to SWCNTs usually caused by using HF treatment to remove catalytic supports; (2) the small metallic particles are easily dissolved in HCl, a significantly milder chemical treatment compared to HF or HNO(3); (3) the high selectivity to SWCNTs with negligible multiwalled carbon nanotubes or graphite, which facilitates the removal of undesired carbon species by selective oxidation. The effectiveness of this purification procedure was evaluated by high-resolution transmission electron microscopy, scanning electron microscopy, Raman, UV-vis-NIR, and fluorescence spectroscopy, solution redox chemistry on fractionated (6,5) tubes, and SWCNT-based field effect transistor device performance. The results demonstrate that Co-MCM-41 catalyst not only provides tubes with narrow semiconducting (n,m) distribution but also allows a mild purification procedure and, therefore, produces SWCNTs with fewer defects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn700106cDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
purification procedure
12
single-walled carbon
8
cobalt-incorporated mcm-41
8
narrow semiconducting
8
semiconducting distribution
8
mild purification
8
electron microscopy
8
low-defect purified
4
purified narrowly
4

Similar Publications

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.

View Article and Find Full Text PDF

Putrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!