The growing commerce in micro- and nanotechnology is expected to increase human exposure to submicrometer and nanoscale particles, including certain forms of amorphous silica. When inhaled, these particles are likely to reach the alveoli, where alveolar type II epithelial cells that are distinguished by apical microvilli are found. These cells play critical roles in the function of the alveoli and participate in the immune response to amorphous silica and other particles by releasing chemokines. The cellular interactions of the particles, which drive the cellular responses, are still unclear. Adverse effects of nanoparticles have been attributed, in part, to the unique properties of materials at the nanoscale. However, little is known about the cellular interactions of individual or small nanoparticle aggregates, mostly because of their tendency to agglomerate under experimental conditions. Here we investigate the interaction and internalization pathway of individual precipitated amorphous silica particles with specific surface properties and size, by following one particle at a time. We find that both 100 and 500 nm particles can take advantage of the actin turnover machinery within filopodia and microvilli-like structures to advance their way into alveolar type II epithelial cells. This pathway is strictly dependent on the positive surface charge of the particle and on the integrity of the actin filaments, unraveling the coupling of the particle with the intracellular environment across the cell membrane. The retrograde pathway brings a new mechanism by which positive surface charge supports particle recruitment, and potential subsequent toxicity, by polarized epithelial cells bearing microvilli.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn700149rDOI Listing

Publication Analysis

Top Keywords

amorphous silica
12
epithelial cells
12
submicrometer nanoscale
8
microvilli-like structures
8
alveolar type
8
type epithelial
8
silica particles
8
cellular interactions
8
positive surface
8
surface charge
8

Similar Publications

Insights into Calcium Phosphate Formation Induced by the Dissolution of 45S5 Bioactive Glass.

ACS Biomater Sci Eng

January 2025

CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.

Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Purpose: Improving drug solubility is crucial in formulating poorly water-soluble drugs, especially for oral administration. The incorporation of drugs into mesoporous silica nanoparticles (MSN) is widely used in the pharmaceutical industry to improve physical stability and solubility. Therefore, this study aimed to elucidate the mechanism of poorly water-soluble drugs within MSN, as well as evaluate the impact on the dissolution and physical stability.

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Uptake and Transpiration of Solid and Hollow SiO Nanoparticles by Terrestrial Plant (Apium Graveolens var. secalinum).

Chemosphere

January 2025

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:

Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!