Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups.

ACS Nano

Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

Published: February 2008

Using a novel hydrogen peroxide heating method, we synthesized milky white, water-soluble polyhydroxylated fullerenes (fullerenols) with 36-40 hydroxyl groups (estimated average) along with 8-9 secondary bound water molecules. The fullerenols exhibited high water solubility up to 58.9 mg/mL in a neutral (pH = 7) condition. Dynamic light scattering analysis showed a high dispersion property, to give a narrow particle size distribution within 0.7-2.0 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn700151zDOI Listing

Publication Analysis

Top Keywords

hydroxyl groups
8
facile synthesis
4
synthesis highly
4
highly water-soluble
4
water-soluble fullerenes
4
fullerenes half-covered
4
half-covered hydroxyl
4
groups novel
4
novel hydrogen
4
hydrogen peroxide
4

Similar Publications

An amine-promoted three-component radical selenofunctionalization reaction of alkenes with TBHP and diselenide is disclosed. The reaction conditions are mild and suitable for a wide range of substrates (29 examples), and all give the corresponding hydroxyselenenylation products in moderate to excellent yields. In addition, preliminary studies on the mechanism reveal that the current method might proceed via a radical pathway.

View Article and Find Full Text PDF

The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization.

View Article and Find Full Text PDF

A comprehensive analysis of storage impact on toxicity assessment of ozonated effluents.

J Hazard Mater

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China. Electronic address:

Neglecting the time intervals between sampling and biological testing can lead to misinterpretation of the hazards associated with advanced oxidation processes when assessed through bioassays. This study investigates changes in the non-specific toxicity of ozonated aromatic compounds and analyzes the factors such as temperature and light exposure influencing these changes during sample storage. The findings reveal a significant decrease in biotoxicity of ozonated effluents, ranging from 41 % to 83 %, within the first four days of storage at 22 °C under natural light exposure.

View Article and Find Full Text PDF

Architecting highly hydratable and permeable dense Janus membrane for rapid and robust membrane distillation desalination.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:

Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.

View Article and Find Full Text PDF

Nitrate-Photolysis Shortens the Lifetimes of Brown Carbon Tracers from Biomass Burning.

Environ Sci Technol

December 2024

State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.

Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!