Au(I)-Catalyzed cycloisomerizations terminated by sp(3) C-H bond insertion.

J Am Chem Soc

Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.

Published: March 2009

The gold(I)-catalyzed cycloisomerization of 1,5-enynes and 1,4-allylallenes to tetracyclododecane and tetracyclotridecane derivatives, respectively, is reported. Complexation of the cationic gold(I) complex to either the alkyne or allene moiety induces an intramolecular addition of the alkene, leading to a gold(I)-stabilized carbenoid intermediate. This intermediate undergoes a formal sp(3) C-H insertion to generate the tetracyclic adduct. A series of deuterium labeling experiments showed that the C-H functionalization step proceeds with an inverse kinetic isotope effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880645PMC
http://dx.doi.org/10.1021/ja808780rDOI Listing

Publication Analysis

Top Keywords

sp3 c-h
8
aui-catalyzed cycloisomerizations
4
cycloisomerizations terminated
4
terminated sp3
4
c-h bond
4
bond insertion
4
insertion goldi-catalyzed
4
goldi-catalyzed cycloisomerization
4
cycloisomerization 15-enynes
4
15-enynes 14-allylallenes
4

Similar Publications

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

C-C bond coupling with sp C-H bond via active intermediates from CO hydrogenation.

Nat Commun

January 2025

Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.

Article Synopsis
  • CO hydrogenation has been identified as a more sustainable and efficient alternative to methanol in the side-chain alkylation of 4-methylpyridine (MEPY) using a ZnZrO/CsX tandem catalyst, achieving a conversion rate of 19.6%.
  • This new method results in 82% selectivity for 4-ethylpyridine (ETPY) and demonstrates 6.5 times greater activity compared to traditional methanol-mediated processes.
  • The success of this catalytic process is attributed to the dual functionality of the catalyst components, facilitating both CO hydrogenation and the activation of C-H and C-C bonds, with CHO* species acting as the crucial intermediate.
View Article and Find Full Text PDF

C(sp3)-H Bond Functionalization of 8-Methylquinolines.

Chem Asian J

December 2024

CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR, Chemical Technology, Palampur, India, Palampur, 176061, Palampur, INDIA.

Quinolines have emerged as essential components in various medicinal agents, playing a key role in treating various ailments. Numerous drugs with a quinoline core have been recognized for their antimalarial, antibacterial, and anticancer activities and have been successfully commercialized, including chloroquine, ciprofloxacin, topotecan, etc. Over the past two decades, we have witnessed a tremendous expansion in the C-H bond functionalization of quinoline scaffolds to widen this chemical space for drug discovery further.

View Article and Find Full Text PDF

Biocatalytic C-H oxidation meets radical cross-coupling: Simplifying complex piperidine synthesis.

Science

December 2024

Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA.

Modern medicinal chemists are targeting more complex molecules to address challenging biological targets, which leads to synthesizing structures with higher sp character (Fsp) to enhance specificity as well as physiochemical properties. Although traditional flat, high-fraction sp molecules, such as pyridine, can be decorated through electrophilic aromatic substitution and palladium (Pd)-based cross-couplings, general strategies to derivatize three-dimensional (3D) saturated molecules are far less developed. In this work, we present an approach for the rapid, modular, enantiospecific, and diastereoselective functionalization of piperidine (saturated analog of pyridine), combining robust biocatalytic carbon-hydrogen oxidation with radical cross-coupling.

View Article and Find Full Text PDF

Cyclometalation offers a wide number of organometallic metallacycles showing diverse applications. However, such NHC complexes synthesized via an sp C-H bond activation are rare. An iridium(III) complex with a chiral mesoionic N-heterocyclic carbene (MIC) ligand, where the Ir forms an additional Ir-C bond via a regiospecific sp C-H bond activation at the N-methylbenzyl wingtip, was synthesized and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!