Novel BN hollow nanoribbons (BNHNRs) were fabricated by a simple ZnS nanoribbon templating method. Such BNHNRs have a distinct structure and show unique optical properties, as demonstrated from Raman, Fourier transform infrared spectroscopy, UV-vis spectroscopy, and cathodoluminescence spectroscopy, when compared with other forms of BN nanostructures. With high crystallinity, the BNHNRs exhibit an extraordinary ultraviolet CL emission at 5.33 eV. Such a property is highly advantageous for optoelectronic applications, particularly in the ultraviolet region, such as blue lasing and light emitting diodes. This templating method has also been extended to synthesize other hollow nanostructures such as boron carbonitride. This study represents a new methodology for fabricating hollow nanostructures with defined crystallinity and unique optical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn8004922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!