Fluorescent single walled carbon nanotube/silica composite materials.

ACS Nano

Center for Integrated Nanotechnologies, Los Alamos National Laboratory, MS K771, Los Alamos, New Mexico 87545, USA.

Published: November 2008

We present a new approach for the preparation of single walled carbon nanotube silica composite materials that retain the intrinsic fluorescence characteristics of the encapsulated nanotubes. Incorporation of isolated nanotubes into optically transparent matrices, such as sol-gel prepared silica, to take advantage of their near-infrared emission properties for applications like sensing has been a challenging task. In general, the alcohol solvents and acidic conditions required for typical sol-gel preparations disrupt the nanotube/surfactant assembly and cause the isolated nanotubes to aggregate leading to degradation of their fluorescence properties. To overcome these issues, we have used a sugar alcohol modified silica precursor molecule, diglycerylsilane, for encapsulation of nanotubes in silica under aqueous conditions and at neutral pH. The silica/nanotube composite materials have been prepared as monoliths, at least 5 mm thick, or as films (<1 mm) and were characterized using fluorescence and Raman spectroscopy. In the present work we have investigated the fluorescence characteristics of the silica encapsulated carbon nanotubes by means of redox doping studies as well as demonstrated their potential for biosensing applications. Such nanotube/silica composite systems may allow for new sensing and imaging applications that are not currently achievable.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn8003839DOI Listing

Publication Analysis

Top Keywords

composite materials
12
single walled
8
walled carbon
8
isolated nanotubes
8
fluorescent single
4
carbon nanotube/silica
4
nanotube/silica composite
4
materials approach
4
approach preparation
4
preparation single
4

Similar Publications

Multilayer Composite Electrodes for Simultaneously Improved Mechanical and Electrochemical Performance.

ACS Appl Mater Interfaces

January 2025

The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Structural batteries offer a transformative approach to integrate energy storage directly into the frameworks of electric vehicles and aircrafts, enabling multifunctional construction. This study presents a nacre-inspired multilayer composite electrode fabricated via the cold sintering process (CSP), achieving a balance of enhanced electrochemical performance and mechanical robustness. The composite electrode combines active electrode materials with a ductile conducting polymer-carbon-mixture phase in a layered architecture.

View Article and Find Full Text PDF

Coastal reefs benefit the survival and growth of mobile organisms by providing shelter and increased food availability. Under increasing pressure from human activities, the coverage of subtidal reefs has decreased along the world's coasts. This decline is motivating efforts to restore these important habitats by re-introducing hard substrates into the coastal zone.

View Article and Find Full Text PDF

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Microplastic pollution in aquatic ecosystems: impacts on diatom communities.

Environ Monit Assess

January 2025

Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.

In recent years, heightened concern has emerged regarding the pervasive presence of microplastics in the environment, particularly in aquatic ecosystems. This concern has prompted extensive scientific inquiry into microplastics' ecological and physiological implications, including threats to biodiversity. The robust adsorption capacity of microplastic surfaces facilitates their widespread distribution throughout aquatic ecosystems, acting also as carriers of organic pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!