We present a systematic study of defects in thin films of cylinder-forming block copolymers upon long-term thermal or solvent annealing. In particular, we consider in detail the peculiarities of both classical and specific topological defects, and conclude that there is a strong "defect structure-chain mobility" relationship in block copolymers. In the systems studied, representative defect configurations provide connectivity of the minority phase in the form of dislocations with a closed cylinder end or classical disclinations with incorporated alternative, nonbulk structures with planar symmetry. In solvent-annealed films with enhanced chain mobility, the neck defects (bridges between parallel cylinders) were observed. This type of nonsingular defect has not been identified in block copolymer systems before. We argue that topological arguments and 2D defect representation, sufficient for lamellar systems, are not sufficient to determine the stability and mobility of defects in the cylindrical phase. In-situ scanning force microscopy measurements are compared with the simulations based on the dynamic self-consistent mean field theory. The close match between experimental measurements and simulation results suggests that the lateral defect motion is diffusion-driven. In addition, 3D simulations demonstrated that the bottom (wetting) layer is only weakly involved into the structure ordering at the free surface. Finally, the morphological evolution is considered with the focus on the motion and interaction of the representative defect configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn800181mDOI Listing

Publication Analysis

Top Keywords

block copolymers
12
representative defect
8
defect configurations
8
defect
6
specific features
4
features defect
4
defect structure
4
structure dynamics
4
dynamics cylinder
4
cylinder phase
4

Similar Publications

Melt electrowriting of amorphous solid dispersions: Influence of drug and plasticizer on rheology and printing performance.

Int J Pharm

January 2025

Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland. Electronic address:

Drug loaded microfiber scaffolds have potential for sublingual drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (T) just above room temperature, making handling challenging.

View Article and Find Full Text PDF

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!