Hexagonal 2D arrays of Au nanorods support discrete plasmon resonance modes at visible and near-infrared wavelengths when coupled with light at normal incidence (k(z)). Reflectance spectra of nanorod arrays mounted on a thin Au baseplate reveal multiple resonant attenuations whose spectral positions vary with nanorod height and the dielectric medium. Simulations using 3D finite-element method calculations reveal harmonic sets of longitudinal standing waves in cavities between nanorods, reminiscent of acoustic waves generated by musical instruments. The nodes and antinodes of these quarter-wave plasmon modes are bounded, respectively, at the base and tips of the array. The number of harmonic resonances and their frequencies can be adjusted as a function of nanorod height, diameter-spacing ratio, and the refractive index of the host medium. Dispersion relations based on these standing-wave modes show strong retardation effects, attributed to the coupling of nanorods via transverse modes. Removal of the metal baseplate is predicted to result in resonant transmission through the Au nanorod arrays, at frequencies defined by half-wave modes within the open-ended cavities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn8006477 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Nagoya University: Nagoya Daigaku, Department of Chemistry, Graduate School of Science, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN.
A new series of metal-organic nanotubes was constructed through one-dimensional assembly using molecular triangles or molecular squares composed of paddlewheel dirhodium complexes and bidentate axial ligands. The metal-organic nanotubes were significantly different from conventional solid metal-organic framework (MOF) motifs. They exhibit good solubility owing to the branched side chains at their periphery and demonstrate high orientation capabilities in thin films owing to their anisotropic structure.
View Article and Find Full Text PDFNanoscale
December 2024
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
The high overpotential of the oxygen evolution reaction (OER) and the strong corrosion of the anode are the main problems currently faced by the zinc hydrometallurgical process. This study achieved the successful synthesis of titanium dioxide nanotubes doped by Al and V on a TC4 alloy. Subsequently, a composite electrode, TC4/AVTN-7/PbO-ZrO-CoO, was prepared utilizing composite electrodeposition.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Environment and Climate Change Canada, Aquatic Contaminant Research Division, 105 McGill, Montreal, QC H1S 1E7, Canada.
The increasing use of nanocomposites has raised concerns about the potential environmental impacts, which are less understood than those observed with individual nanomaterials. The purpose of this study was to investigate the toxicity of nanosilver carbon-walled nanotube (AgNP-CWNT) composites in . The lethal and sublethal toxicity was determined based on the characteristic morphological changes (retraction/loss of tentacles and body disintegration) for this organism.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
As a unique form of TiO, TiO nanotube arrays (TiONTAs) have been widely used. TiONTAs are usually prepared by Ti foil, with little research reporting its preparation by Ti mesh. In this paper, TiONTAs are prepared on a Ti mesh surface via an anodic oxidation method in the F-containing electrolyte.
View Article and Find Full Text PDFACS Omega
December 2024
Czech Advanced Technology and Research Institute (CATRIN), Regional Centre of Advanced Technologies and Materials Department, Palacký University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic.
Controlling the overall geometry of plasmonic materials allows for tailoring their optical response and the effects that can be exploited to enhance the performance of a wide range of devices. This study demonstrates a simple method to control the size and distribution of gold (Au) nanoparticles grown on the surface of spaced titanium dioxide (TiO) nanotubes by varying the deposition time of magnetron sputtering. While shorter depositions led to small and well-separated Au nanoparticles, longer depositions promoted the formation of quasi-continuous layers with small interparticle gaps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!