Probing graphene edges via Raman scattering.

ACS Nano

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: January 2009

We present results of a Raman scattering study from the region near the edges of n-graphene layer films. We find that a Raman band (D) located near 1344 cm(-1) (514.5 nm excitation) originates from a region next to the edge with an apparent width of approximately 70 nm (upper bound). The D-band was found to exhibit five important characteristics: (1) a single Lorentzian component for n = 1, and four components for n = 2-4, (2) an intensity I(D) approximately cos(4) theta, where theta is the angle between the incident polarization and the average edge direction, (3) a local scattering efficiency (per unit area) comparable to the G-band, (4) dispersive behavior ( approximately 50 cm(-1)/eV for n = 1), consistent with the double resonance (DR) scattering mechanism, and (5) a scattering efficiency that is almost independent of the crystallographic orientation of the edge. High-resolution transmission electron microscope images reveal that our cleaved edges exhibit a sawtooth-like roughness of approximately 3 nm (i.e., approximately 20 times the C-C bond length). We propose that in the double resonance Raman scattering process the photoelectron scatters diffusely from our edges, obscuring the recently proposed strong variation in the scattering from armchair versus zigzag symmetry edges based on theoretical arguments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn8003636DOI Listing

Publication Analysis

Top Keywords

raman scattering
12
scattering efficiency
8
double resonance
8
scattering
7
edges
5
probing graphene
4
graphene edges
4
raman
4
edges raman
4
scattering raman
4

Similar Publications

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Near-Field Mixing in a Coaxial Dual Swirled Injector.

Flow Turbul Combust

November 2024

Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France.

Improving mixing between two coaxial swirled jets is a subject of interest for the development of next generations of fuel injectors. This is particularly crucial for hydrogen injectors, where the separate introduction of fuel and oxidizer is preferred to mitigate the risk of flashback. Raman scattering is used to measure the mean compositions and to examine how mixing between fuel and air streams evolves along the axial direction in the near-field of the injector outlet.

View Article and Find Full Text PDF

Vertical flow immunoassay for multiplex mycotoxins based on photonic nitrocellulose and SERS nanotags.

Food Chem X

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!