In an attempt to develop non-ATP-competitive inhibitors of the autophosphorylation of IR, the effects of the synthetic peptides, Ac-DIY(1158)ET-NH(2) and Ac-DY(1162)Y(1163)RK-NH(2), on the phosphorylation of IR were studied in vitro. The peptides were derived from the amino-acid sequence in the activation loop of IR. They inhibited the autophosphorylation of IR to 20.5 and 40.7%, respectively, at 4000 microM. The Asp/Asn- and Glu/Gln-substituted peptides, Ac-NIYQT-NH(2) and Ac-NYYRK-NH(2), more potently inhibited the autophosphorylation than did the corresponding parent peptides. The inhibitory potencies of the substituted peptides were decreased with increasing concentrations of ATP, indicating that these peptides employ an ATP-competitive mechanism in inhibiting the autophosphorylation of IR. In contrast, those of the parent peptides were not affected. Mass spectrometry showed that the parent peptides were phosphorylated by IR, suggesting that they interact with the catalytic loop. Moreover, docking simulations predicted that the substituted peptides would interact with the ATP-binding region of IR, whereas their parent peptides would interact with the catalytic loop of IR. Thus, Ac-DIYET-NH(2) and Ac-DYYRK-NH(2) are expected to be non-ATP-competitive inhibitors. These peptides could contribute to the development of a drug employing a novel mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.1114DOI Listing

Publication Analysis

Top Keywords

parent peptides
16
peptides
11
inhibiting autophosphorylation
8
non-atp-competitive inhibitors
8
inhibited autophosphorylation
8
substituted peptides
8
interact catalytic
8
catalytic loop
8
peptides interact
8
autophosphorylation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!