Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons.

Bull Math Biol

Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.

Published: April 2009

To help elucidate the causes of irregular tubular flow oscillations found in the nephrons of spontaneously hypertensive rats (SHR), we have conducted a bifurcation analysis of a mathematical model of two nephrons that are coupled through their tubuloglomerular feedback (TGF) systems. This analysis was motivated by a previous modeling study which predicts that NaCl backleak from a nephron's thick ascending limb permits multiple stable oscillatory states that are mediated by TGF (Layton et al. in Am. J. Physiol. Renal Physiol. 291:F79-F97, 2006); that prediction served as the basis for a comprehensive, multifaceted hypothesis for the emergence of irregular flow oscillations in SHR. However, in that study, we used a characteristic equation obtained via linearization from a single-nephron model, in conjunction with numerical solutions of the full, nonlinear model equations for two and three coupled nephrons. In the present study, we have derived a characteristic equation for a model of any finite number of mutually coupled nephrons having NaCl backleak. Analysis of that characteristic equation for the case of two coupled nephrons has revealed a number of parameter regions having the potential for differing stable dynamic states. Numerical solutions of the full equations for two model nephrons exhibit a variety of behaviors in these regions. Some behaviors exhibit a degree of complexity that is consistent with our hypothesis for the emergence of irregular oscillations in SHR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-008-9370-xDOI Listing

Publication Analysis

Top Keywords

coupled nephrons
16
characteristic equation
12
tubuloglomerular feedback
8
flow oscillations
8
model nephrons
8
nacl backleak
8
hypothesis emergence
8
emergence irregular
8
oscillations shr
8
numerical solutions
8

Similar Publications

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Extracellular Ca is the first ligand that has been confirmed to function by activating the calcium-sensing receptor (CaSR), a member of G-protein coupled receptors. CaSR controls not only calcium homeostasis, but also plays a pivotal role in many cellular processes such as cell proliferation and apoptosis; moreover, it is implicated in the development of cardiovascular diseases. TGF-β/Smads signaling pathway is a classical pathway of renal fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF
Article Synopsis
  • Kir5.1, when paired with Kir4.2, forms a crucial potassium channel (heterotetramer) in the basolateral membrane of mouse proximal tubules, affecting K+ conductance.
  • Immunofluorescence and immunoblotting show Kir4.2 is found exclusively in proximal tubules, while Kir5.1 is present in both proximal and distal nephrons; however, the absence of Kir5.1 reduces Kir4.2 levels and affects membrane staining.
  • Patch-clamp recordings reveal that Kir5.1-knockout mice lack the 50-pS K channel that is present in wild-type mice, leading to a less negative membrane potential in the proximal tubules, indicating the importance
View Article and Find Full Text PDF

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!