Specific binding of 59Fe to various brain structures was investigated in rats using nanomolar concentrations of 59FeCl3 and quantitative autoradiography. Saturation studies revealed high affinity binding (kd in the nanomolar range) with binding sites density (Bmax) which varied in different brain regions from 462 fmol per mg tissue in the central thalamic nuclei to over 4 pmol per mg tissue in the cerebral peduncle. Binding was seen in both white and gray matter structures. Bmax values for frontal cortex, dentate gyrus, and substantia nigra were significantly lower in older rats. The distribution of 59Fe binding sites was not consistent with the distribution of brain iron as reported by other investigators. 59Fe binding was reduced significantly in the presence of free radicals. These observations suggest that high affinity binding sites for iron are localized differentially in various brain structures and may play an important role in the translocation and storage of potentially harmful ferric cations in brain. The finding that the capacity of the brain tissue to bind iron diminished with age in discrete brain regions suggests that in the aged animal, the removal of "free" iron from the cellular domain may be impaired in such regions, leading to increased susceptibility to iron-enhanced lipid peroxidation and cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.490290314DOI Listing

Publication Analysis

Top Keywords

binding sites
12
brain
8
brain structures
8
high affinity
8
affinity binding
8
brain regions
8
59fe binding
8
binding
7
autoradiographic study
4
study iron-binding
4

Similar Publications

Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.

View Article and Find Full Text PDF

Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln) interactions with coordination systems representing bulk solvent water and protein binding sites.

View Article and Find Full Text PDF

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Human astroviruses (HAstVs) are a leading cause of viral childhood diarrhea that infects nearly every individual during their lifetime. Although human astroviruses are highly prevalent, no approved vaccine currently exists. Antibody responses appear to play an important role in protection from HAstV infection; however, knowledge about the neutralizing epitope landscape is lacking, as only three neutralizing antibody epitopes have previously been determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!