This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire Information for Resource Management System data can be observed. Future research is recommended to better understand the nature of these differences. While there is a general lack of available statistical data on forest fires in the Caribbean, a few general observations can be made: Forest fires occur mainly in dry forest types (500 to 1000 mm of mean annual rainfall). These are also the areas where most human settlements are located. Lowland high forests and montane forests with higher rainfall (1000 and more mm y(-1)) are less susceptible to forest fire, but they can burn in exceptionally dry years. Most of the dry forest ecosystems in the Caribbean can be considered to be fire-sensitive ecosystems, while the pine forests in the Caribbean (Cuba, Dominican Republic, and the Bahamas) are maintained by wildfires. In fire-sensitive ecosystems, uncontrolled burning often encourages the spread of alien invasive species. A Caribbean Fire Management Cooperation Strategy was developed between 2005 and 2006 under auspices of the Food and Agriculture Organization of the United Nations. This regional strategy aims to strengthen Caribbean fire management networking by encouraging closer collaboration among countries with similar ecological conditions. The strategy for the Caribbean identifies a number of research, training, and management activities to improve wildfire management capacity in the Caribbean.

Download full-text PDF

Source
http://dx.doi.org/10.1579/0044-7447-37.7.528DOI Listing

Publication Analysis

Top Keywords

forest fires
12
caribbean
9
insular caribbean
8
forest fire
8
dry forest
8
fire-sensitive ecosystems
8
caribbean fire
8
fire management
8
forest
7
fire
7

Similar Publications

Variable effects of a fire-retardant gradient on seasonal wetland communities.

Ecotoxicology

January 2025

Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.

Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.

View Article and Find Full Text PDF

Enhanced CH emissions from global wildfires likely due to undetected small fires.

Nat Commun

January 2025

Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Monitoring methane (CH) emissions from terrestrial ecosystems is essential for assessing the relative contributions of natural and anthropogenic factors leading to climate change and shaping global climate goals. Fires are a significant source of atmospheric CH, with the increasing frequency of megafires amplifying their impact. Global fire emissions exhibit large spatiotemporal variations, making the magnitude and dynamics difficult to characterize accurately.

View Article and Find Full Text PDF

In July 2022 southeast England experienced a record breaking heatwave and unprecedented wildfires in urban areas. We investigate fire weather trends since 1960 in southeast England using a large ensemble of initialised climate models. Record smashing temperatures coincided with widespread fires in London, and we find that while wildfire risk was high, it was not record breaking.

View Article and Find Full Text PDF

Development of national post-fire restoration system to assess net GHG impacts and salvage biomass availability.

MethodsX

December 2024

Natural Resources Canada, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z1M5, Canada.

In light of the recent unprecedented wildfires in Canada and the potential for increasing burned areas in the future, there is a need to explore post-fire salvage harvest and restoration and the implications for greenhouse gas (GHG) emissions. Salvage logging and replanting initiatives offer a potential solution by regrowing forests more quickly while meeting societal demands for wood and bioenergy. This study presents a comprehensive modeling framework to estimate post-fire salvage biomass and net GHG emissions relative to a 'do-nothing' baseline for all of Canada's harvest-eligible forests.

View Article and Find Full Text PDF

Fire shapes biodiversity in many forested ecosystems, but historical management practices and anthropogenic climate change have led to larger, more severe fires that threaten many animal species where such disturbances do not occur naturally. As predators, owls can play important ecological roles in biological communities, but how changing fire regimes affect individual species and species assemblages is largely unknown. Here, we examined the impact of fire severity, history, and configuration over the past 35 years on an assemblage of six forest owl species in the Sierra Nevada, California, using ecosystem-scale passive acoustic monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!